K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2022

11.

Gọi độ dài quãng đường AB là x (km) với x>0

Thời gian người đó đi từ A đến B: \(\dfrac{x}{30}\) giờ

Thời gian người đó đi từ B về A: \(\dfrac{x}{40}\) giờ

Do thời gian về ít hơn thời gian đi là 45 phút \(=\dfrac{3}{4}\) giờ nên ta có pt:

\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{x}{120}=\dfrac{3}{4}\)

\(\Rightarrow x=90\left(km\right)\)

NV
11 tháng 3 2022

12.

Đổi \(3h20'=\dfrac{10}{3}h\) 

Gọi vận tốc của cano là x (km/h) với x>0

Vận tốc cano kém vận tốc ô tô là 17km/h nên vận tốc ô tô là: \(x+17\) (km/h)

Quãng đường cano đi trong 3h20': \(\dfrac{10}{3}x\) (km)

Quãng đường ô tô đi trong 2h: \(2\left(x+17\right)\) (km)

Do quãng đường sông ngắn hơn đường bộ là 10km nên ta có pt:

\(2\left(x+17\right)-\dfrac{10x}{3}=10\)

\(\Leftrightarrow-\dfrac{4}{3}x=-24\)

\(\Leftrightarrow x=18\)

11 tháng 3 2022

bài nào

11 tháng 3 2022

bài ở đou

Câu 2: 

a) Ta có: \(-7x+21< 0\)

\(\Leftrightarrow-7x< -21\)

hay x>3

Vậy: S={x|x>3}

Câu 2: 

b) Ta có: x<y

nên -x>-y

\(\Leftrightarrow-x+2021>-y+2021\)

mà \(-y+2021>-y+2020\)

nên -x+2021>-y+2020

hay 2021-x>2020-y

1: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-3x^2+27x-27-x^3+27+9x^2+18x+9=15\)

\(\Leftrightarrow45x=6\)

hay \(x=\dfrac{2}{15}\)

2: Ta có: \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Leftrightarrow x^3-25x-x^3-8=3\)

\(\Leftrightarrow-25x=11\)

hay \(x=-\dfrac{11}{25}\)

3: Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-5\right)\left(x+5\right)=264\)

\(\Leftrightarrow x^3+64-x^3+25x=264\)

\(\Leftrightarrow25x=200\)

hay x=8

4: Ta có: \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)+6\left(x-2\right)\left(x+2\right)=60\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+8+6x^2-24=60\)

\(\Leftrightarrow12x=84\)

hay x=7

6: Ta có: \(\left(x+2\right)^3-\left(x-2\right)^3=64\)

\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8=64\)

\(\Leftrightarrow12x^2=48\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

7: Ta có: \(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)

\(\Leftrightarrow25x^2-10x+1-25x^2+16=7\)

\(\Leftrightarrow-10x=-10\)

hay x=1

8: Ta có: \(\left(4x+1\right)^2-\left(2x+3\right)^2+5\left(x+2\right)^2+3\left(x-2\right)\left(x+2\right)=500\)

\(\Leftrightarrow16x^2+8x+1-4x^2-12x-9+5x^2+20x+20+3x^2-12=500\)

\(\Leftrightarrow20x^2+16x-500=0\)

\(\text{Δ}=16^2-4\cdot20\cdot\left(-500\right)=40256\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-16-8\sqrt{629}}{40}=\dfrac{-2-\sqrt{629}}{5}\\x_2=\dfrac{-16+8\sqrt{629}}{40}=\dfrac{-2+\sqrt{629}}{5}\end{matrix}\right.\)

9: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x=28\)

hay x=7

Bài 3: 

1: \(35^2=1225\)

2: \(25^2=625\)

3: \(75^2=5625\)

4: \(95^2=9025\)

5: \(101\cdot99=9999\)

6: \(36\cdot44=1584\)

7: \(72\cdot68=4896\)

Bài 3: 

Xét ΔIAB có 

\(\widehat{AIB}+\widehat{IAB}+\widehat{IBA}=180^0\)

\(\Leftrightarrow\widehat{IAB}+\widehat{IBA}=115^0\)

hay \(\widehat{DAB}+\widehat{ABC}=230^0\)

Xét tứ giác ABCD có 

\(\widehat{D}+\widehat{C}+\widehat{DAB}+\widehat{CBA}=360^0\)

\(\Leftrightarrow\widehat{D}+\widehat{C}=150^0\)

mà \(\widehat{C}-\widehat{D}=10^0\)

nên \(2\cdot\widehat{C}=160^0\)

\(\Leftrightarrow\widehat{C}=80^0\)

\(\Leftrightarrow\widehat{D}=70^0\)