Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=3 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-3\cdot\dfrac{3}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3\cdot\dfrac{3}{5}=\dfrac{15}{5}-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)
Câu 3:
Gọi thời gian hai vòi 1 và 2 chảy một mình đầy bể lần lượt là x,y
Trong 1 giờ, vòi 1 chảy được: 1/x(bể)
Trong 1 giờ, vòi 2 chảy được: 1/y(bể)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{4}{y}=\dfrac{2}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{4}{y}=\dfrac{2}{3}\\\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{1}{x}=\dfrac{1}{5}-\dfrac{1}{15}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{15}{2}\\y=15\end{matrix}\right.\)
x^3 - 3x^2 + x + 5 = 0
=> x^3 + x^2 - 4x^2 - 4x + 5x + 5 = 0
=> x^2(x + 1) - 4x(x + 1) + 5(x + 1) = 0
=> (x^2 - 4x + 5)(x + 1) = 0
x^2 - 4x + 5 > 0
=> x + 1 = 0
=> x = -1
Lời giải:
Gọi số thứ nhất là $a$ và số thứ hai là $b$.
Theo bài ra ta có:
\(\left\{\begin{matrix}
4b+5a=18040\\
3a-2b=2002\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
5a+4b=18040\\
6a-4b=4004\end{matrix}\right.\)
\(\Rightarrow 5a+6a=18040+4004\)
\(\Leftrightarrow 11a=22044\Leftrightarrow a=2004\)
\(b=\frac{3a-2002}{2}=2005\)
Lời giải:
a.
Nếu $m=3$ thì pt trở thành:
$x^2+4x-5=0$
$\Leftrightarrow (x-1)(x+5)=0$
$\Leftrightarrow x=1$ hoặc $x=-5$
b.
Để pt có 2 nghiệm pb $x_1,x_2$ thì:
$\Delta'=4+m^2-4>0\Leftrightarrow m^2>0\Leftrightarrow m\neq 0$
PT có 2 nghiệm $(-2+m, -2-m)$
Khi đó:
\(x_2=x_1^3+4x_2^2\Leftrightarrow \left[\begin{matrix} -2+m=(-2-m)^3+4(-2+m)^2\\ -2-m=(-2+m)^3+4(-2-m)^2\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} -m^3+2m^2-29m+10=0\\ m^3-2m^2+29m+10=0\end{matrix}\right.\)
Nghiệm khá xấu, cảm giác đề cứ sai sai bạn ạ.