K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2022

11.

Gọi độ dài quãng đường AB là x (km) với x>0

Thời gian người đó đi từ A đến B: \(\dfrac{x}{30}\) giờ

Thời gian người đó đi từ B về A: \(\dfrac{x}{40}\) giờ

Do thời gian về ít hơn thời gian đi là 45 phút \(=\dfrac{3}{4}\) giờ nên ta có pt:

\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{x}{120}=\dfrac{3}{4}\)

\(\Rightarrow x=90\left(km\right)\)

NV
11 tháng 3 2022

12.

Đổi \(3h20'=\dfrac{10}{3}h\) 

Gọi vận tốc của cano là x (km/h) với x>0

Vận tốc cano kém vận tốc ô tô là 17km/h nên vận tốc ô tô là: \(x+17\) (km/h)

Quãng đường cano đi trong 3h20': \(\dfrac{10}{3}x\) (km)

Quãng đường ô tô đi trong 2h: \(2\left(x+17\right)\) (km)

Do quãng đường sông ngắn hơn đường bộ là 10km nên ta có pt:

\(2\left(x+17\right)-\dfrac{10x}{3}=10\)

\(\Leftrightarrow-\dfrac{4}{3}x=-24\)

\(\Leftrightarrow x=18\)

3 tháng 9 2018

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

7 tháng 7 2020

\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)

\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)

\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)

\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)

Thay x = 79 vào biểu thức trên , ta có

\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)

\(=0+79+15\)

\(=94\)

Vậy \(P(x)=94\)khi x = 79

\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)

\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)

\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)

\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)

Thay x = 9 vào biểu thức trên , ta có

\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)

\(=0-9+10\)

\(=1\)

Vậy \(Q(x)=1\)khi x = 9

\(c.R(x)=x^4-17x^3+17x^2-17x+20\)

\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)

\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)

\(=(x-16)(x^3-x^2+x)-x+20\)

Thay x = 16 vào biểu thức trên , ta có

\(R(16)=(16-16)(16^3-16^2+16)-16+20\)

\(=0-16+20\)

\(=4\)

Vậy \(R(x)=4\)khi x = 16

\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)

\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)

\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)

\(=(x-12)(x^9-x^8+....+x)-x+10\)

Thay x = 12 vào biểu thức trên , ta có

\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)

\(=0-12+10\)

\(=-2\)

Vậy \(S(x)=-2\)khi x = 12

Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện

Chúc bạn học tốt , nhớ kết bạn với mình

13 tháng 7 2021

1)

a) 4y2-4xy+x2= x2-4xy+4y2= (x-2y)2

b) 9x2-12xy+4y2= (3x)2-2.3x.2y+(2y)2= (3x-2y)2

c) 16x2-25=(4x)2-52= (4x-5)(4x+5)

d) 1-9y2= 12-(3y)2=(1-3y)(1+3y)

 

13 tháng 7 2021

g) x3-27y3= (x-3y)(x2+3xy+9y2)

h) 64 + 8x3=(4+2x)(16+8x+4x2)

Bài 1: 

a: =8xy/2x=4y

b: \(=\dfrac{4x-1-7x+1}{3x^2y}=\dfrac{-3x}{3x^2y}=\dfrac{-1}{xy}\)

c: \(=\dfrac{3x-x+6}{2x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}=\dfrac{1}{x}\)

e: \(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-10}{4}=-\dfrac{5}{2}\)

13 tháng 1 2022

câu 3 bài 1: = (x-y)(y-1)

 

2 tháng 12 2021

Bài 1:

a) \(=\dfrac{\left(2m-2n\right)^2}{5\left(m^2-n^2\right)}=\dfrac{4\left(m-n\right)^2}{5\left(m-n\right)\left(m+n\right)}=\dfrac{4m-4n}{4m+5n}\)

b) \(=\dfrac{\left(x-y\right)\left(x-z\right)}{\left(x+y\right)\left(x-z\right)}=\dfrac{x-y}{x+y}\)

c) \(=\dfrac{\left(x-3\right)\left(y-9\right)}{-\left(x-3\right)}=9-y\)

d) \(=\dfrac{\left(3x+2-x-2\right)\left(3x+2+x+2\right)}{x^2\left(x-1\right)}=\dfrac{8x\left(x+1\right)}{x^2\left(x-1\right)}=\dfrac{8x+8}{x^2-x}\)

e) \(=\dfrac{xy\left(x-y\right)}{2}=\dfrac{x^2y-xy^2}{2}\)

g) \(=\dfrac{12x\left(1-2x\right)}{24x\left(x-2\right)}=\dfrac{1-2x}{2x-4}\)

Bài 2:

a) \(=\dfrac{3\left(m-2n\right)}{-5\left(m-2n\right)}=-\dfrac{3}{5}\)

b) \(=\dfrac{\left(y+1\right)\left(y^2+4\right)}{\left(y-3\right)\left(y+1\right)}=\dfrac{y^2+4}{y-3}\)

c) \(=\dfrac{y^4\left(y-2\right)+2y^2\left(y-2\right)-3\left(y-2\right)}{\left(y-2\right)\left(y+4\right)}=\dfrac{\left(y-2\right)\left(y^4+2y^2-3\right)}{\left(y-2\right)\left(y+4\right)}=\dfrac{y^4+2y^2-3}{y+4}\)

Bài 3:

\(A=\dfrac{\left(m^2+2mn+n^2\right)+5\left(m+n\right)-6}{\left(m^2+2mn+n^2\right)+6\left(m+n\right)}=\dfrac{\left(m+n\right)^2+5\left(m+n\right)-6}{\left(m+n\right)^2+6\left(m+n\right)}=\dfrac{2013^2+5.2013-6}{2013^2+6.2013}=\dfrac{2012}{2013}\)

17 tháng 3 2020

đặt \(t=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

phương trình đã cho trở thành : \(t^2+t-12=0\)

phương trình này có nghiệm dương t=3. từ đó suy ra 2 nghiệm đã cho là x=1 , x=2

17 tháng 3 2020

(x2 + x + 1)2 + (x2 + x + 1) - 12 = 0

Đặt x2 + x + 1 = t

<=> t2 + t - 12 = 0

<=> t2 + 4t - 3t - 12 = 0

<=> (t + 4)(t - 3) = 0

<=> (x2 + x + 1 + 4)(x2 + x + 1 - 3) = 0

<=> [(x2 + x + 1/4) + 19/4](x2 + 2x - x - 2) = 0

<=> [(x2 + 1/2)2 + 19/4](x + 2)(x - 1) = 0

<=> (x + 2)(x - 1) = 0

<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy S = {-2; 1}