K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,\(6x^2+x-5=0\)

\(\Delta=b^2-4ac=1^2-4.6.\left(-5\right)=1+120=121\)

Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{121}}{2.6}=\frac{-1-11}{12}=\frac{-12}{12}=-1\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{121}}{2.6}=\frac{-1+11}{12}=\frac{10}{12}=\frac{5}{6}\)

Vậy \(S=\left\{-1;\frac{5}{6}\right\}\)

b, \(3x^2+4x+2=0\)

\(\Delta=b^2-4ac=4^2-4.3.2=16-24=-8\)

Vì \(\Delta< 0\)nên pt vô nghiệm 

c, \(x^2-8x+16=0\)

\(\Delta=b^2-4ac=\left(-8\right)^2-4.1.16=64-64=0\)

Vì \(\Delta=0\)nên pt có nghiệm kép 

\(x_1=x_2=\frac{-b}{2a}=\frac{-b'}{a}=\frac{8}{4}=\frac{4}{2}=2\)

8 tháng 4 2020

a) \(6x^2+x-5=0\)

Ta có : \(\Delta=1+4.6.5=121>0\)

\(\Rightarrow\sqrt{\Delta}=11\)

Phương trình có hai nghiệm :

\(x_1=\frac{-1+11}{2.6}=\frac{5}{6}\)

\(x_2=\frac{-1-11}{2.6}=-1\)

b) \(3x^2+4x+2=0\)

Ta có : \(\Delta=4^2-4.3.2=-8< 0\)

Vậy phương trình vô nghiệm

c) \(x^2-8x+16=0\)

Ta có : \(\Delta=\left(-8\right)^2-4.1.16=0\)

Phương trình có nghiệm kép :

\(x_1=x_2=\frac{8}{2}=-4\)

9 tháng 9 2015

a. Phương trình tương đương với \(\left(x^2-2x-2\right)\left(x^2+5x-2\right)=0\)  hay \(x^2-2x-2=0\)  hoặc \(x^2+5x-2=0\). Đến đây sử dụng Delta hoặc viết hai phương trình dưới dạng \(\left(x-1\right)^2=3,\left(2x+5\right)^2=33\) ta được bốn nghiệm là \(x=1\pm\sqrt{3},-\frac{5}{2}\pm\frac{\sqrt{33}}{2}\)

b. Phương trình tương đương với \(3\left(x+5\right)\left(x+6\right)\left(x+9\right)=8x+6\left(x+5\right)\left(x+6\right)\leftrightarrow3\left(x+5\right)\left(x+6\right)\left(x+9\right)=\left(x+9\right)\left(6x+20\right)\)

hay \(\left(x+9\right)\left(3x^2+27x+70\right)=0\leftrightarrow x=-9.\)

21 tháng 3 2016

1) 1

2)7,5

3) 8

1 * cũng được nhe

22 tháng 3 2016

bạn lm thế nào vậy?

4 tháng 4 2017

a) 2x2 – 7x + 3 = 0 có a = 2, b = -7, c = 3

∆ = (-7)2 – 4 . 2 . 3 = 49 – 24 = 25, \(\sqrt{\text{∆}}\) = 5

x1 = \(\dfrac{-\left(-7\right)-5}{2.2}\) = \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\), x2 =\(\dfrac{-\left(-7\right)+5}{2.2}=\dfrac{12}{4}=3\)

b) 6x2 + x + 5 = 0 có a = 6, b = 1, c = 5

∆ = 12 - 4 . 6 . 5 = -119: Phương trình vô nghiệm

c) 6x2 + x – 5 = 0 có a = 6, b = 5, c = -5

∆ = 12 - 4 . 6 . (-5) = 121, \(\sqrt{\text{∆}}\) = 11

x1 = \(\dfrac{-5-1}{2.3}\) = -1; x2 = \(\dfrac{-1+11}{2.6}\) =

d) 3x2 + 5x + 2 = 0 có a = 3, b = 5, c = 2

∆ = 52 – 4 . 3 . 2 = 25 - 24 = 1, \(\sqrt{\text{∆}}\) = 1

X1 = \(\dfrac{-5-1}{2.3}\) = -1, x2 = \(\dfrac{-5+1}{2.3}\) = \(\dfrac{-2}{3}\)

e) y2 – 8y + 16 = 0 có a = 1, b = -8, c = 16

∆ = (-8)2 – 4 . 1. 16 = 0

y1 = y2 = \(-\dfrac{-8}{2.1}\) = 4

f) 16z2 + 24z + 9 = 0 có a = 16, b = 24, c = 9

∆ = 242 – 4 . 16 . 9 = 0

z1 = z2 = \(\dfrac{-24}{2.16}\) = \(\dfrac{3}{4}\)

13 tháng 8 2018

a) \(3x^3-x+2=0\)

\(\Leftrightarrow3x^3+3x^2-3x^2-3x+2x+2=0\)

\(\Leftrightarrow3x^2\left(x+1\right)-3x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2-3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x^2-3x^2+2=0\left(1\right)\end{matrix}\right.\)

Xét phương trình (1):

\(\Delta=9-24=-15< 0\)

\(\Rightarrow\) Phương trình (1) vô nghiệm.

Vậy phương trình đã cho có nghiệm \(x=-1\)

b) \(x^3-6x^2+10x-4=0\)

\(\Leftrightarrow x^3-2x^2-4x^2+8x^{ }+2x^{ }-4=0\)

\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x^2-4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^2-4x+2=0\left(2\right)\end{matrix}\right.\)
Xét phương trình (2):

\(\Delta'=4-2=2>0\)

\(\Rightarrow\) Phương trình (2) có 2 nghiệm phân biệt:

\(x_1=2+\sqrt{2}\)

\(x_2=2-\sqrt{2}\)

Vậy phương trình đã cho có ba nghiệm: \(x_1=2+\sqrt{2};x_2=2-\sqrt{2};x_3=2\)

c)\(3x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x=-1\)

Vậy phương trình đã cho có nghiệm \(x=-1\)

16 tháng 2 2020

a. Thay \(m=-2\) vào pt đề cho ta được pt:

\(x^2-6x-7=0\left(2\right)\)

Lại có: \(a-b+c=1+6-7=0\) nên pt 2 có nghiệm là: \(x_1=1\)và \(x_2=7\)

b. Ta có: \(\Delta'=\left(-3\right)^2-1\left(2m-3\right)=9-2m+3=12-2m\)

Để pt 1 có 2 nghiệm \(x_1;x_2\Leftrightarrow12-2m\ge0\)

\(\Leftrightarrow m\le6\)

Theo hệ thức vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\left(3\right)\)

Theo đề bài ta có: \(x^2_1x_2+x_1x_2^2=24\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\left(4\right)\)

Thay \(\left(3\right)\)vào \(\left(4\right)\)ta được:

\(6\left(2m-3\right)=24\)

\(\Rightarrow2m-3=4\)

\(\Rightarrow2m=7\)

\(\Rightarrow m=\frac{7}{2}\left(tmđkxđ\right)\)

Vậy .............

16 tháng 2 2020

b, \(\Delta'=\left(-6\right)^2-1.\left(2m-3\right)=36-2m+3=39-2m\)

Để pt (1) có 2 nghiệm <=> \(\Delta'\ge0\Leftrightarrow39-2m\ge0\Leftrightarrow m\le\frac{39}{2}\)

Theo hệ thức vi-ét ta có: \(x_1+x_2=\frac{-\left(-6\right)}{1}=6;x_1x_2=\frac{2m-3}{1}=2m-3\)

Theo bài ra ta có: \(x_1^2x_2+x_1x_2^2=24\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\)

\(\Leftrightarrow\left(2m-3\right).6=24\Leftrightarrow2m-3=24\)

\(\Leftrightarrow2m=27\Leftrightarrow m=\frac{27}{2}\left(TM\right)\)

13 tháng 4 2017

Câu c;d giải \(\Delta\)

Các câu còn lại là phương trình trùng phương, mình chỉ làm 1 câu thôi. Các câu sau tương tự

a/ \(x^4-2x^2-8=0\left(1\right)\)

Đặt: \(x^2=t\left(t\ge0\right)\)

\(\left(1\right)\Rightarrow t^2-2t-8=0\)

( a = 1; b = -2; c = -8 )

\(\Delta=b^2-4ac\) 

   \(=\left(-2\right)^2-4.1.\left(-8\right)\)

   \(=36>0\)

\(\sqrt{\Delta}=\sqrt{36}=6\)

Pt có 2 nghiệm phân biệt:

\(t_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-6}{2.1}=-2\left(l\right)\)

\(t_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+6}{2.1}=4\left(n\right)\Rightarrow x^2=4\Leftrightarrow x=2hayx=-2\)

Vậy: S = {-2;2}

31 tháng 3 2018

bạn chỉ cần gọi x\(^2\)=t(t\(\ge\)0)

ta có p/trình mới có dạng: a.t\(^2\)+b.t+c=0

giải phương trình bậc hai theo cách tính \(\Delta\)=b\(^2\)-4.a.c và xét dấu\(\Delta\)

Nếu delta nhỏ hơn 0 => pt vô nghiệm => ko tìm đc t=> ko tìm đc x

Nếu delta bằng 0 => pt có nghiệm kép t\(_1\)=t\(_2\)=\(\dfrac{-b}{2a}\)(xét điều kiện của t)=> thay t=\(\dfrac{-b}{2a}\)vào x\(^2\)=t ta tính đc: x=\(\sqrt{\dfrac{-b}{2a}}\)

Nếu delta lớn hơn 0 => pt có 2 nghiệm phân biệt t\(_1\)= \(\dfrac{-b+\sqrt{\Delta}}{2a}\)

t\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}\)

thay từng TH của t vào x\(^2\)=t tìm x và kết luận.

Chúc bạn hoc tốt!