Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Q(x)=5x^2-2x+1
Q(1)=5-2+1=4
Q(-1)=5+2+1=8
Q(2)=5*2^2-2*2+1=5*4-4+1=16+1=17
Q(-2)=5*(-2)^2-2*(-2)+1=5*4+2*2+1=25
Q(0)=1
b: R(x)=-x^2+2x-10
R(1)=-1+2-10=1-10=-9
R(-1)=-(-1)^2+2(-1)-10=-1-2-10=-13
R(2)=-4+6-10=-8
R(-2)=-4-6-10=-20
R(0)=-10
d: P(x)=6x^5-4x^3+9x^2-2x+2
P(2)=6*2^5-4*2^3+9*2^2-2*2+2=194
P(-2)=6*(-2)^5-4*(-2)^3+9*(-2)^2-2*(-2)+2=-118
P(0)=2
P(1)=6-4+9-2+2=11
P(-1)=-6+4+9+2+2=11
Chia cả hai vế cho 5^x:
pt <=> (3/5)^x + (4/5)^x = 1
- Ta nhận thấy x=2 là nghiệm của phương trình
(3/5)^2 + (4/5)^2 = 1
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1)
(4/5)^x < (4/5)^2 (do 4/5<1)
----------------------------------------...
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt)
=> Phương trình không có nghiệm khi x>2.
+ Tương tự với x<2, phương trình không có nghiệm khi x<2.
- Vậy phương trình có nghiệm duy nhất x=2.
3^x+4^x=5^x vax=2
Thay x vao bieu thu ta co :
3^2+4^2=5^2
Xong roi do
a/
\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)
\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)
+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z
+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z
b/
\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)
=> m=y
+
cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha
x | -2 | -1 | -3 | -10/3 | -3,5 | 5 | 19/4 |
y | 6 | 3 | 9 | 10 | 10,5 | -15 | -57/4 |
Hệ số tỉ lệ: k= y:x= 3:(-1)= (-3)
a) Gọi a là hệ số tỉ lệ của x và y
Do x và y là hai đại lượng tỉ lệ nghịch nên xy = a
\(\Rightarrow a=7.10=70\)
b) Ta có:
xy = 70
\(\Rightarrow\) \(y=\dfrac{70}{x}\)
c) Khi x = 5 thì \(y=\dfrac{70}{5}=14\)
\(a,F=\left(1+\frac{x}{z}\right)\left(1-\frac{y}{z}\right)\left(1-\frac{z}{y}\right)\)
\(=\frac{z+x}{z}.\frac{z-y}{z}.\frac{y-z}{y}\)
Do \(-x+y-z=0\)\(\Rightarrow\hept{\begin{cases}y=x+z\\x=y-z\\z=y-x\end{cases}}\)
Thay x , y , z vào F ta được :
\(F=\frac{y}{z}.\frac{-x}{z}.\frac{x}{y}=\frac{-x^2}{z^2}\)
\(b,x+y+1=0\)\(\Rightarrow x+y=-1\)
\(xy=2\)
\(G=\left(x+y\right)\left(y+1\right)\left(x+1\right)=\left(x+y\right)\left(xy+x +y+1\right)=-1.\left(2-1+1\right)=-2\)