Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
a) Đặt \(x^2+3x+1=y\) khi đó ta có:
\(y\left(y-4\right)-5\)
\(=y^2-4y-5\)
\(=y\left(y-5\right)+\left(y-5\right)\)
\(=\left(y+1\right)\left(y-5\right)\)
Thay \(y=x^2+3x+1\):
\(\left(x^2+3x+1+1\right)\left(x^2+3x+1-5\right)\)
\(=\left(x^2+3x+2\right)\left(x^2+3x-4\right)\)
\(=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x-1\right)+4\left(x-1\right)\right]\)
\(=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x+4\right)\)
b) Biến đổi 3 số sau có chứa x2 + 2x rồi đặt ẩn.
c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+7=y'\)
Khi đó ta đc:
\(y'\left(y'+8\right)+15\)
\(=\left(y'\right)^2+8y'+15\)
\(=y'\left(y'+3\right)+5\left(y'+3\right)\)
\(=\left(y'+5\right)\left(y'+3\right)\)
....
d) \(x^2-2xy+y^2-7x+7y+12\)
Biến đổi chứa x - y rồi đặt ẩn.
Đỗ thị như quỳnh: làm tương tự thôi mà, nếu bạn ko hiểu chỗ nào thì nói đi :)
\(a,4x^2-\left(3x+1\right)\left(2x-1\right)=2\left(x-3\right)^2\)
\(\Leftrightarrow4x^2-\left(6x^2-3x+2x-1\right)=2\left(x^2-6x+9\right)\)
\(\Leftrightarrow4x^2-6x^2+x+1-2x^2+12x-18=0\)
\(\Leftrightarrow-4x^2+13x-17=0\)
\(\Leftrightarrow-4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}\right)-\dfrac{103}{16}=0\)
\(\Leftrightarrow-4\left(x-\dfrac{13}{8}\right)^2=\dfrac{103}{16}\)
\(\Leftrightarrow\left(x-\dfrac{13}{8}\right)^2=\dfrac{-103}{64}\Rightarrow\) pt vô nghiệm
\(b,\left(5x-1\right)\left(x+1\right)-\left(2x-1\right)\left(2x+1\right)=x.\left(x+1\right)\)\(\Leftrightarrow5x^2+5x-x-1-\left(4x^2-1\right)=x^2+x\)
\(\Leftrightarrow5x^2+5x-x-1-4x^2+1-x^2-x=0\) \(\Leftrightarrow3x=0\Rightarrow x=0\)
\(c,7x^2-\left(2x-3\right)^2=1+3\left(x+2\right)^2\)
\(\Leftrightarrow7x^2-\left(4x^2-12x+9\right)=1+3\left(x^2+4x+4\right)\)
\(\Leftrightarrow7x^2-4x^2+12x-9=1+3x^2+12x+12\)\(\Leftrightarrow7x^2-4x^2+12x-9-1-3x^2-12x-12=0\)\(\Leftrightarrow-22=0\) ( vô lí)
Vậy phương trình vô nghiệm
1. (2x - 3) . (2x+3) - 4 . (x+ 2)2 = 6
[ ( 2x )2 - 32 ] - 4 . ( x2 + 2.x.2 + 22) = 6
4x2 - 9 - 4 . ( x2 + 4x + 4) = 6
4x2 - 9 - 4x2 - 16x - 16 = 6
-16x -25 = 6
x = \(-\dfrac{31}{16}\)
a, \(\left(3x+2\right)^2-\left(2x-1\right)\left(2x+1\right)=5\left(x-2\right)^2\)
\(\Rightarrow9x^2+12x+4-\left(4x^2-1\right)=5\left(x^2-4x+4\right)\)
\(\Rightarrow9x^2+12x+4-4x^2-1=5x^2-20x+20\)
\(\Rightarrow9x^2-4x^2-5x^2+12x+20x=20+1-4\)
\(\Rightarrow32x=17\Rightarrow x=\dfrac{17}{32}\)
b, \(\left(x+2\right)^2-\left(x+3\right)\left(x-1\right)=5x\)
\(\Rightarrow x^2+4x+4-\left(x^2-x+3x-3\right)=5x\)
\(\Rightarrow x^2+4x+4-x^2+x-3x+3-5x=0\)
\(\Rightarrow-3x=-3-4\Rightarrow-3x=-7\Rightarrow x=\dfrac{7}{3}\)
c, \(\left(3x-1\right)\left(x-3\right)+\left(x-2\right)^2=\left(2x-5\right)^2\)
\(\Rightarrow3x^2-9x-x+3+x^2-4x+4=4x^2-20x+25\)
\(\Rightarrow3x^2+x^2-4x^2-9x-x-4x+20x=25-3-4\)
\(\Rightarrow6x=18\Rightarrow x=3\)
Chúc bạn học tốt!!!
1.\(\left(x-5\right).\left(x+5\right)-\left(x+3\right)^2=2x-3\)
\(\Leftrightarrow x^2-25-\left(x^2+6x+9\right)=2x-3\)
\(\Leftrightarrow x^2-25-x^2-6x-9=2x-3\)
\(\Leftrightarrow x^2-25-x^2-6x-9-2x+3=0\)
\(\Leftrightarrow-8x-31=0\)
\(\Leftrightarrow x=\dfrac{-31}{8}\)
\(\left(x-4\right)^3-\left(x-5\right)\left(x^2+5x+25\right)=\left(x+2\right)\left(x^2-2x+4\right)-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x-4\right)^3-\left(x^3-5^3\right)=\left(x^3+2^3\right)-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x-4\right)^3-x^3+5^3=x^3+2^3-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x^3-12x^2+48x-64\right)-x^3+5^3=x^3+2^3-\left(x^3+12x^2+48x+64\right)\)
\(\Leftrightarrow x^3-12x^2+48x-64-x^3+5^3=x^3+2^3-x^3-12x^2-48x-64\)
\(\Leftrightarrow-12x^2+48x-64+5^3=2^3-12x^2-48x-64\)
\(\Leftrightarrow-12x^2+48x-61=-12x^2-48x-56\)
\(\Leftrightarrow96x=-117\)
\(\Leftrightarrow x=\dfrac{-117}{96}=\dfrac{-39}{32}\)
a)\((x^2- 4).(x^2 - 10) = 72 Đặt x^2 - 7 = a(1), ta có (a+3)(a-3)=72 a^2-9=72 a^2=81 a=+-9 xét 2 trường hợp a = 9 và -9 khi thay vào (1) ta có..... tự lm nốt nha \)
b) nhóm x+1 vs x+4 và x+2 vs x+3 ta sẽ có (x2+5x+4)(x2+5x+6)(x+5)=40