Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(f\left(5-2\sqrt{3}\right)=f\left(2\right)\)
\(\Leftrightarrow\sqrt{4-2\sqrt{3}}+m\left(5-2\sqrt{3}\right)+2=\sqrt{2-1}+2m+2\)
\(\Leftrightarrow\sqrt{3}+1+m\left(5-2\sqrt{3}\right)=2m+3\)
\(\Leftrightarrow m\left(3-2\sqrt{3}\right)=2-\sqrt{3}\)
hay \(m=-\dfrac{\sqrt{3}}{3}\)
Bài 11:
a: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\)
\(=\sqrt{x}\cdot\left(\sqrt{x}-1\right)\)
\(=x-\sqrt{x}\)
b: Để P=2 thì \(x-\sqrt{x}-2=0\)
hay x=4
Bài 10:
a: Ta có: \(A=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}:\dfrac{x-2\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}\cdot\dfrac{x+1}{\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để A<0 thì \(\sqrt{x}-1< 0\)
hay x<1
Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)
Để A=-1 thì \(x+\sqrt{x}+1=-\sqrt{x}+1\)
\(\Leftrightarrow x=0\)
c: Thay x=4 vào A, ta được:
\(A=\dfrac{4+2+1}{2-1}=7\)
1: Ta có: \(\sqrt{3x-5}=2\)
\(\Leftrightarrow3x-5=4\)
hay x=3
2: Ta có: \(\sqrt{25\left(x-1\right)}=20\)
\(\Leftrightarrow x-1=16\)
hay x=17
Lời giải:
b. Tam giác $ABC$ vuông tại $A$ và $C=45^0$ nên:
$B=90^0-C=90^0-45^0=45^0$
Do đó, tam giác $ABC$ vuông cân tại $A$
$\Rightarrow AC=AB=50$ (cm)
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{50^2+50^2}=50\sqrt{2}$ (cm)
f.
Theo định lý Pitago: $AC=\sqrt{BC^2-AB^2}=\sqrt{7^2-5^2}=2\sqrt{6}$ (cm)
$\sin B=\frac{AC}{BC}=\frac{2\sqrt{6}}{7}$
$\Rightarrow B=44,42^0$
$C=90^0-B=90^0-44,42^0=45,58^0$
b) Xét ΔABC vuông tại A có \(\widehat{C}=45^0\)(gt)
nên ΔABC vuông cân tại A(Định nghĩa tam giác vuông cân)
Suy ra: \(\widehat{B}=45^0\) và AC=50(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=50^2+50^2=5000\)
hay \(BC=50\sqrt{2}\left(cm\right)\)
Bài 8:
a: Ta có: \(\sqrt{4x}=\sqrt{5}\)
\(\Leftrightarrow4x=5\)
hay \(x=\dfrac{5}{4}\)
b: Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}-6=0\)
\(\Leftrightarrow2\left|x-1\right|=6\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
c: Ta có: \(\sqrt{2x-3}=\sqrt{7}\)
\(\Leftrightarrow2x-3=7\)
hay x=5
d: Ta có: \(\sqrt{\left(3x-2\right)^2}=4\)
\(\Leftrightarrow\left|3x-2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=4\\3x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Bài 7:
a: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y=2\cdot0+2=2\\x=0\end{matrix}\right.\)
5.
$|E|=|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}$
$\Rightarrow E=\pm \sqrt{(x_1+x_2)^2-4x_1x_2}$
6.
$|F|=|x_1^2-x_2^2|=|x_1-x_2|.|x_1+x_2|=\sqrt{(x_1+x_2)^2-4x_1x_2}.|x_1+x_2|$
$\Rightarrow F=\pm \sqrt{(x_1+x_2)^2-4x_1x_2}(x_1+x_2)$
7.
$G=x_1^3-x_2^3=(x_1-x_2)(x_1^2+x_1x_2+x_2^2)$
$=(x_1-x_2)[(x_1+x_2)^2-x_1x_2]=E[(x_1+x_2)^2-x_1x_2]$
8.
$H=x_1^4+x_2^4=(x_1^2+x_2^2)(x_1^2-x_2^2)=AF$
9.
$I=\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}$10.
$K=\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_2-1+x_1-1}{(x_1-1)(x_2-1)}=\frac{(x_1+x_2)-2}{x_1x_2-(x_1+x_2)+1}$
11.
$L=\frac{x_2}{x_1-1}+\frac{x_1}{x_2-1}=\frac{x_2^2-x_2+x_1^2-x_1}{(x_1-1)(x_2-1)}$
$=\frac{(x_1^2+x_2^2)-(x_1+x_2)}{(x_1-1)(x_2-1)}$
$=\frac{A-(x_1+x_2)}{x_1x_2-(x_1+x_2)+1}$
12.
M=\frac{1}{x_1}-\frac{1}{x_2}=\frac{x_2-x_1}{x_1x_2}=\frac{-E}{x_1x_2}$