Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn giúp mk làm 5 bài này nhé. mk đang cần gấp. Thanks các bạn nhiều
Mk cần gấp 5 bài này trong hôm nay. Các bạn cố gắng giúp mk. Thanks
a) x\(^2\) - 10x + 9 =0
x\(^2\) - 2x . 5 + 25 = 16
(x - 5)\(^2\) = 4\(^2\)
=> x - 5 = 4
x = 9
Vậy x = 9
b) x\(^2\) - 7x + 6 = 0
x\(^2\) - 2x . 3,5 + 12,25 = 6,25
(x - 3,5)\(^2\) = 2,5\(^2\)
=> x - 3,5 = 2,5
x = 6
Vậy x = 6
c) x\(^2\) + 13x + 12 = 0
x\(^2\) + 2x . 6,5 + 42,25 = 30,25
(x + 6,5)\(^2\) = 5,5\(^2\)
=> x + 6,5 = 5,5
x = -1
Vậy x = -1
d) x\(^2\) - 24x + 23 = 0
x\(^2\) - 2x . 12 + 244 = 121
(x - 12)\(^2\) = 11\(^2\)
=> x - 12 = 11
x = 23
Vậy x = 23
e) 3x\(^2\) + 14x + 8 = 0
3x\(^2\) + 2 . \(\sqrt{3}\)x . \(\frac{7}{\sqrt{3}}\) + \(\frac{49}{3}\) = \(\frac{25}{3}\)
(\(\sqrt{3}\)x + \(\frac{7}{\sqrt{3}}\))\(^2\) = \(\left(\frac{5}{\sqrt{3}}\right)^2\)
=> \(\sqrt{3}\)x + \(\frac{7}{\sqrt{3}}\) = \(\frac{5}{\sqrt{3}}\)
=> \(\sqrt{3}\)x = \(\frac{-2}{\sqrt{3}}\)
=> x = \(\frac{-2}{3}\)
23.27. \(x^2-y^2-2x+1\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
23.25.
\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)
\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)
23.23
\(x^3-2x^2-6x+27\)
\(=\left(x^3+27\right)-2x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)
\(=\left(x+3\right)\left(x^2-5x+9\right)\)
x^2 - x - y^2 - y
= x^2 - y^2 - x - y
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
x^2 - 2xy + y^2 - z^2
= ( x- y ) ^2 - z^2
= ( x - y - z ) ( x - y + z )
18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)
19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)
20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)
21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)
22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)
23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)
BAI 3 :quy đồng lên ta được a^3/abc+b^3/abc+c^3/abc=(a^3+b^3+c^3)/abc
ta có (a+b)^3=a^3+3a^2b+3ab^2+b^3=>a^3+b^3=(a+b)^3-3ab(a+b)
=>a^3+b^3+c^3=(a+b+c)^3+3(a+b)c(a+b+c)=0+0=0
=>A=0/ABC=0
BAI 4:
theo dinh ly py ta go ta co ah^2=ac^2-hc^2
va ah^2 cung bang ab^2-bh^2
=>2ah^2=ac^2-hc^2+ab^2-bh^2=ab^2+ac^2-hb^2-hc^2=ac^2-bh^2-hc^2
=(bh+ch)^2-bh^2-ch^2=bh^2+2.bh.ch+ch^2-bh^2-ch^2
=2.bh.ch=2ah^2
==>ah^2=bhxch
d. DE cat AM tai O
vi tam giac ahm vuong tai h co ho la trung tuyen nen ho=am/2
ma am=de nen oh=de/2
==>tam giac dhe vuong tai h
A B M C D I K H x y K'
Kẻ hình phụ và các điểm như hình trên. (chú ý CK' , IH , DK vuông góc với AB)
Dễ dàng chứng minh được IK và IK' lần lượt là các đường trung bình của hình thang CDBM và CDMA => K, K' cố định
=> \(\begin{cases}IK=\frac{1}{2}\left(CM+BD\right)\\IK'=\frac{1}{2}\left(AC+MD\right)\end{cases}\)
\(\Rightarrow IK=IK'=\frac{1}{2}AB\) không đổi
Vì IK // BD nên góc DBA = góc IKA = 60 độ
=> tam giác IKK' là tam giác đều có cạnh không đổi
Từ I kẻ đường cao IH => H là trung điểm AB =>H cố định (1) . Đặt AB = a
\(\Rightarrow IH^2=IK^2-\left(\frac{IK}{2}\right)^2=\left(\frac{a}{2}\right)^2-\left(\frac{a}{4}\right)^2=\frac{3a^2}{16}\Rightarrow IH=\frac{a\sqrt{3}}{4}\)(2) không đổi
Suy ra \(I\in\left(H;\frac{a\sqrt{3}}{4}\right)\) hay tập hợp quỹ tích điểm I thuộc đường tròn tâm H bán kính \(\frac{a\sqrt{3}}{4}\)