Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời nói chẳng mất tiền mua. Lựa lời mà chửi cho vừa lòng nhau. Đã chửi, phải chửi thật đau. Chửi mà hiền quá còn lâu nó chừa. Chửi đúng , không được chửi bừa . Chửi cha mẹ nó , không thừa một ai . Khi chửi , chửi lớn mới oai. Chửi hay là phải chửi dài , chửi lâu . Chửi đi chửi lại mới ngầu. Chửi nhiều cho nó nhức đầu , đau tai. Chửi xong nhớ nói bái bai . Phóng nhanh kẻo bị ăn chai vào mồm.
\(a,9x^2+6x-8\)
\(=\left(3x\right)^2+2.3x+1-9\)
\(=\left(3x+1\right)^2-3^3\)
\(=\left(3x+1-3\right)\left(3x+1+3\right)=\left(3x-2\right)\left(3x+4\right)\)
\(b,4x^2-4x-3\)
\(=\left(2x\right)^2-2.2x+1-4\)
\(=\left(2x-1\right)^2-2^2\)
\(=\left(2x-1-2\right)\left(2x-1+2\right)=\left(2x-3\right)\left(2x+1\right)\)
Mình ko thêm bớt hạng tử nhé.
\(8x^3-3x+6x^2-1\)
\(=\left(8x^3-1\right)+\left(6x^2-3x\right)\)
\(=\left(2x-1\right)\left(4x^2+2x+1\right)+3x\left(2x-1\right)\)
\(=\left(2x-1\right)\left[\left(4x^2+2x+1\right)+3x\right]\)
\(=\left(2x-1\right)\left(4x^2+5x+1\right)\)
\(=\left(2x-1\right)\left[4x\left(x+1\right)+\left(x+1\right)\right]\)
\(=\left(2x-1\right)\left(x+1\right)\left(4x+1\right)\)
\(8x^3-3x+6x^2-1=\left(8x^3-12x^2+6x-1\right)+\left(18x^2-9x\right)\)
\(=\left(\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\right)+\left(18x^2-9x\right)\)
\(=\left(2x-1\right)^3+9x\left(2x-1\right)=\left(2x-1\right)\left(\left(2x-1\right)^2+9x\right)\)
\(=\left(2x-1\right)\left(4x^2-4x+1+9x\right)=\left(2x-1\right)\left(4x^2+5x+1\right)\)
7(x - 3) - x(3 - x)
= (x - 3)(7 + x)
chỉ bt có v mà k bt có đúng k
1 ) 7 ( x - 3 ) - x ( 3 - x )
= 7 ( x - 3 ) + x ( x - 3 )
= ( x - 3 ) ( 7 + x )
2 ) 4x2 - 6x + 3 - 2x
= 4x2 - 2x - 6x + 3
= 2x ( 2x - 1 ) - 3 ( 2x - 1 )
= ( 2x - 1 ) ( 2x - 3 )
3 ) ( 4 - x ) - 4x + x2
= ( 4 - x ) - x ( 4 - x )
= ( 4 - x ) ( 1 - x )
4 ) x2 - 2xy + y2
= ( x - y )2
\(-3x^2+4x-2020\)
\(=-3\left(x^2-\frac{4}{3}x+\frac{2020}{3}\right)\)
\(=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}+\frac{6056}{9}\right)\)
\(=-3\left[\left(x-\frac{2}{3}\right)^2+\frac{6056}{9}\right]\)
\(=-3\left(x-\frac{2}{3}\right)^2-\frac{6056}{3}\ge-\frac{6056}{3}\)
(Dấu "=" \(\Leftrightarrow x-\frac{2}{3}=0\Leftrightarrow x=\frac{2}{3}\))
1, x3+ 6x2+11x+6
= x3 + 2x2 + 4x2 + 8x + 3x + 6
= x2(x + 2) + 4x(x + 2) + 3(x + 2)
= (x + 2)(x2 + 4x + 3)
2, x4+3x3-7x2-27x-18
= x4 + 3x3 - 9x2 + 2x2 - 27x -18
= (x4 - 9x2) + (3x3 - 27x) + (2x2 - 18)
= x2(x2 - 9) + 3x(x2 - 9) + 2(x2 - 9)
= (x2 - 9)(x2 + 3x + 2)
= (x + 3)(x - 3)(x2 + 3x + 2)
3, x3-8x2+x+42
= x3 - 7x2 - x2 + 7x - 6x + 42
= (x3 - 7x2) - (x2 - 7x) - (6x - 42)
= x2(x - 7) - x(x - 7) - 6(x - 7)
= (x - 7)(x2 - x - 6)
4, x4+5x3-7x2-41x-30
= x4 + x3 + 4x3 - 4x2 - 11x2 - 11x - 30x - 30
= (x4 + x3) + (4x3 - 4x2) - (11x2 + 11x) - (30x + 30)
= x3(x + 1) + 4x2(x + 1) - 11x(x + 1) - 30(x + 1)
= (x3 + 4x2 - 11x - 30)(x + 1)
5, x5+x-1
= x5 - x4 + x3 + x4 - x3 + x2 - x2+ x -1
= x3(x2 - x + 1)+ x2(x2 - x + 1)- (x2 - x + 1)
= (x2 - x + 1)(x3 + x2 - 1)
6, x5-x4-1
= x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1
= x2(x3 - x - 1) - x(x3 - x - 1) + (x3 - x - 1)
= (x2 - x + 1)(x3 - x - 1)
1, x 3+ 6x 2+11x+6
= x 3 + 2x 2 + 4x 2 + 8x + 3x + 6
= x 2 ﴾x + 2﴿ + 4x﴾x + 2﴿ + 3﴾x + 2﴿
= ﴾x + 2﴿﴾x 2 + 4x + 3﴿
2, x 4+3x 3‐7x 2‐27x‐18
= x 4 + 3x 3 ‐ 9x 2 + 2x 2 ‐ 27x ‐18
= ﴾x 4 ‐ 9x 2 ﴿ + ﴾3x 3 ‐ 27x﴿ + ﴾2x 2 ‐ 18﴿
= x 2 ﴾x 2 ‐ 9﴿ + 3x﴾x 2 ‐ 9﴿ + 2﴾x 2 ‐ 9﴿
= ﴾x 2 ‐ 9﴿﴾x 2 + 3x + 2﴿
=﴾x + 3﴿﴾x ‐ 3﴿﴾x 2 + 3x + 2﴿
3, x 3‐8x 2+x+42
= x 3 ‐ 7x 2 ‐ x 2 + 7x ‐ 6x + 42
= ﴾x 3 ‐ 7x 2 ﴿ ‐ ﴾x 2 ‐ 7x﴿ ‐ ﴾6x ‐ 42﴿
= x 2 ﴾x ‐ 7﴿ ‐ x﴾x ‐ 7﴿ ‐ 6﴾x ‐ 7﴿
= ﴾x ‐ 7﴿﴾x 2 ‐ x ‐ 6﴿
4, x 4+5x 3‐7x 2‐41x‐30
= x 4 + x 3 + 4x 3 ‐ 4x 2 ‐ 11x 2 ‐ 11x ‐ 30x ‐ 30
= ﴾x 4 + x 3 ﴿ + ﴾4x 3 ‐ 4x 2 ﴿ ‐ ﴾11x 2 + 11x﴿ ‐ ﴾30x + 30﴿
= x 3 ﴾x + 1﴿ + 4x 2 ﴾x + 1﴿ ‐ 11x﴾x + 1﴿ ‐ 30﴾x + 1﴿
= ﴾x 3 + 4x 2 ‐ 11x ‐ 30﴿﴾x + 1﴿
5, x 5+x‐1
= x 5 ‐ x 4 + x 3 + x 4 ‐ x 3 + x 2 ‐ x 2+ x ‐1
= x 3 ﴾x 2 ‐ x + 1﴿+ x 2 ﴾x 2 ‐ x + 1﴿‐ ﴾x 2 ‐ x + 1﴿
= ﴾x 2 ‐ x + 1﴿﴾x 3 + x 2 ‐ 1﴿ 6, x 5‐x 4‐1
= x 5 ‐ x 3 ‐ x 2 ‐ x 4 + x 2 + x + x 3 ‐ x ‐ 1
= x 2 ﴾x 3 ‐ x ‐ 1﴿ ‐ x﴾x 3 ‐ x ‐ 1﴿ + ﴾x 3 ‐ x ‐ 1﴿
= ﴾x 2 ‐ x + 1﴿﴾x 3 ‐ x ‐ 1﴿
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x=t\)
\(\left(t+10\right)\left(t+12\right)-8=t^2+22t+120-8\)
\(=t^2+22t+112=\left(t+8\right)\left(t+14\right)\)
Theo cách đặt \(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
\(a^2-6a+5=\left(a^2-5a\right)-\left(a-5\right)=a\left(a-5\right)-\left(a-5\right)=\left(a-1\right)\left(a-5\right)\)
\(a^2-7a+12=\left(a^2-3a\right)-\left(4a-12\right)=a\left(a-3\right)-4\left(a-3\right)=\left(a-4\right)\left(a-3\right)\)
\(4a^2+4a-3=4a^2-2a+\left(6a-3\right)=2a\left(2a-1\right)+3\left(2a-1\right)=\left(2a+3\right)\left(2a-1\right)\)
X2 - 6x + 5
= x2 - 6x + 5 + 4 - 4
= x2 - 6x + 9 - 22
= ( x - 3 )2 - 22
= ( x - 3 - 2 ) ( x - 3 + 2 )
(3x-1)(2x+3)
6x2+7x-3
=6x2-2x+9x-3
=(6x2-2x)+(9x-3)
=2x(3x-1)+3(3x-1)
=(3x-1)(2x+3)