Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số
(Đây là loại hoán vị lặp)
13 . b ) SH \(\perp\left(ABCD\right)\Rightarrow SH\perp DI\) .
Dễ dàng c/m : DI \(\perp HC\) . Suy ra : \(DI\perp\left(SHC\right)\Rightarrow DI\perp SC\) ( đpcm )
Thấy : \(\left(SBC\right)\cap\left(ABCD\right)=BC\)
C/m : SB \(\perp BC\) . Thật vậy : \(BC\perp AB;BC\perp SH\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)
Có : \(AB\perp BC\) nên : \(\left(\left(SBC\right);\left(ABCD\right)\right)=\left(SB;AB\right)=\widehat{SBA}=60^o\)
Lời giải:
Theo bài thì mỗi bạn sẽ nhận 2 quyển vở khác loại. Gọi số bạn nhận vở toán văn là $a$, vở văn anh là $b$, vở anh toán là $c$
Ta có:
$a+b+c=9; a+b=6; b+c=5; a+c=7$
$\Rightarrow a=3; b=2; c=4$
Tặng quà cho 9 bạn thỏa đề tức là tặng quà sao cho có 3 bạn trong 9 bạn nhận được toán văn, 2 bạn trong 6 bạn còn lại nhân được văn anh, 4 bạn còn lại nhận được anh toán. Số cách trao là:
$C^3_9.C^2_6.C^4_4=1260$