Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
a)Để A là phân số
\(\Rightarrow n-2\ne0\Leftrightarrow n\ne2\)
b)Để \(A\in Z\)
\(\Rightarrow-5\)chia hết \(n-2\)
\(\Rightarrow n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{3;1;7;-3\right\}\)
a) de A la phan so thi n-2=1=>n=3
b)de A la so nguyen thi -5chia het cho n-2=>n-2 thuoc uoc cua -5={5,1,-1,-5}=>n=>{10,6,4,0} thi A la so nguyen
Để A có giá trị nguyên thì 2x+3 phải chia hết cho x-1
=>2(x-1)+5 chia hết cho x-1
=>x-1 thuộc Ư(5)={1;5;-1;-5}
+, x-1=1 =>x=2
+,....
Còn lại tự làm nha bn
a, để 2x + 3/x - 1 nguyên
=> 2x + 3 ⋮ x - 1
=> 2x - 2 + 5 ⋮ x - 1
=> 2(x - 1) + 5 ⋮ x - 1
=> 5 ⋮ x - 1
=> x - 1 thuộc Ư(5)
=> x - 1 thuộc {-1; 1; -5; 5}
=> x thuộc {0; 2; -4; 6}
b, đề 3x - 4/x + 1 nguyên
=> 3x - 4 ⋮ x + 1
=> 3x + 3 - 7 ⋮ x + 1
=> 3(x + 1) - 7 ⋮ x + 1
=> 7 ⋮ x + 1
a) Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2.\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
b) Giải:
Để \(P\in Z\Rightarrow2x-3⋮x+1\)
Ta có:
\(2x-3⋮x+1\)
\(\Rightarrow\left(2x+2\right)-5⋮x+1\)
\(\Rightarrow5⋮x+1\)
\(\Rightarrow x+1\in\left\{1;-1;5;-5\right\}\)
+) \(x+1=1\Rightarrow x=0\)
+) \(x+1=-1\Rightarrow x=-2\)
+) \(x+1=5\Rightarrow x=4\)
+) \(x+1=-5\Rightarrow x=-6\)
Vậy \(x\in\left\{0;-2;4;-6\right\}\)
\(\Rightarrow5⋮x+1\)
1)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
2)\(P=\frac{2x-3}{x+1}=\frac{2x+2-5}{x+1}=\frac{2\left(x+1\right)-5}{x+1}=2-\frac{5}{x+1}\)
\(\Rightarrow P\in Z\Leftrightarrow2-\frac{5}{x+1}\in Z\Leftrightarrow\frac{5}{x+1}\in Z\Leftrightarrow5⋮x+1\Leftrightarrow x+1\inƯ\left(5\right)\)
\(\Rightarrow x+1\in\left\{-1;-5;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;-6;0;4\right\}\)
Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.
Mà $x-2< x+4$ nên $x-2=1$
$\Rightarrow x=3$
Thay vào $A$ thì $A=7$ là snt (thỏa mãn)
b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$
Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:
$x-2<0< x+4$
$\Rightarrow -4< x< 2$
$x$ nguyên nên $x=-3,-2,-1,0,1$
\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)
\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)
\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Xét các trường hợp rồi tìm được x thôi :>
\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)
\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)
d, TT
a) x khác 2
b) với x<2
c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)
x-2=(-7,-1,1,7)
x=(-5,1,3,9)
a) đk kiện xác định là mẫu khác 0
=> x-2 khác o=> x khác 2
b)
tử số luôn dương mọi x
vậy để A âm thì mẫu số phải (-)
=> x-2<0=> x<2
c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu
cụ thể
x^2-2x+2x-4+4+3
ghép
x(x-2)+2(x-2)+7
như vậy chỉ còn mỗi số 7 không chia hết cho x-2
vậy x-2 là ước của 7=(+-1,+-7) ok
a) Để \(D=\frac{3x-4}{2x+3}\) là 1 phân số \(\Rightarrow2x+3\ne0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy \(x=\frac{-3}{2}\) thì D là 1 phân số.
b) Để \(D=\frac{3x-4}{2x+3}\) là 1 số nguyên \(\Rightarrow3x-4⋮2x+3\)
\(\Rightarrow2\left(3x-4\right)⋮2x+3\) \(\Rightarrow6x-8⋮2x+3\)
Vì \(2x+3⋮2x+3\) \(\Rightarrow3\left(2x+3\right)⋮2x+3\) \(\Rightarrow6x+9⋮2x+3\)
\(\Rightarrow\left(6x-8\right)-\left(6x+9\right)⋮2x+3\) \(\Rightarrow-17⋮2x+3\)
\(\Rightarrow2x+3\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\) \(\Rightarrow2x\in\left\{-2;-4;14;-20\right\}\)
\(\Rightarrow x\in\left\{-1;-2;7;-10\right\}\)
Vậy \(x=\left\{-1;-2;7;-10\right\}\) thifD là 1 số nguyên.