Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{41}=\dfrac{b}{29}=\dfrac{c}{30}=\dfrac{a+b}{41+29}=\dfrac{700}{70}=10\)
Do đó: a=410; b=290; c=300
2:
Khi a=x thì ta sẽ có f(a)+4*f(1/a)=5a
Khi a=1/x thì ta sẽ có f(1/a)+4*f(a)=5/a
Ta sẽ có hệ là:
f(a)+4*f(1/a)=5a và 4*f(a)+f(1/a)=5/a
=>4*f(a)+16*f(1/a)=20a và 4*f(a)+f(1/a)=5/a
=>15*f(1/a)=20a-5/a
=>f(1/a)=4/3a-1/3a
=>f(a)=5a-4*4/3a+4*1/3a=5a-16/3*a+4/(3*a)=-1/3*a+4/(3*a)
=>\(f\left(x\right)=\dfrac{-1}{3}\cdot x+\dfrac{4}{3\cdot x}\)
Bài 3:
f(0)=2010
=>0+0+c=2010
=>c=2010
=>f(x)=ax^2+bx+2010
f(1)=2011 và f(-1)=2012
=>a+b+2010=2011 và a-b+2010=2012
=>a+b=1 và a-b=2
=>a=3/2 và b=-1/2
=>f(x)=3/2x^2-1/2x+2010
f(-2)=3/2*4-1/2(-2)+2010=2017
khuyến cáo ko nên gạt xuống.
Đồ ngu đồ ăn hại cút mịa mài đê :D
\(\frac{1}{3}x-\frac{3}{5}=\frac{5}{6}x+2\)
\(\Leftrightarrow\frac{x}{3}-\frac{3}{5}=\frac{5x}{6}+2\)
\(\Leftrightarrow2x-\frac{18}{5}=5x+12\)
\(\Leftrightarrow2x-5x=\frac{18}{5}+12\)
\(\Leftrightarrow-3x=\frac{78}{5}\)
\(\Leftrightarrow3x=-\frac{78}{5}\)
\(\Leftrightarrow x=-\frac{26}{5}\)
Ps: đoạn nào không hiểu hỏi anh nhé. Nhớ k để tạo động lực cho anh nhé :33
# Aeri #
a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (cmt).
+ \(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)
+ MB = NC (gt).
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).
Xét tam giác ABC có: AB = AC (cmt).
\(\Rightarrow\) Tam giác ABC cân tại A.
b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)
Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{}\) (đối đỉnh).
\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)
Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:
+ MB = NC (gt).
+ \(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)
\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).
c/ Tam giác MBH = Tam giác NCK (cmt).
\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).
Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).
\(\Rightarrow\) Tam giác OMN tại O.
Lời giải:
$BC\parallel AD$ nên $\widehat{C}+\widehat{D}=180^0$ (hai góc trong cùng phía)
$\Rightarrow \widehat{D}=180^0-\widehat{C}=180^0-73^0=107^0$
Vì $AB\parallel CD$ nên $\widehat{B}+\widehat{C}=180^0$ (trong cùng phía)
$\Rightarrow \widehat{B}=180^0-\widehat{C}=180^0-73^0=107^0$
$\widehat{A}+\widehat{D}=180^0$ (trong cùng phía)
$\Rightarrow \widehat{A}=180^0-\widehat{D}=180^0-107^0=73^0$
Bài 3: Không có ký hiệu góc. Bạn cần bổ sung thêm
Bài 4:
Vì $AB\parallel CD$ nên:
$\widehat{ACD}+\widehat{BAC}=180^0$ (hai góc trong cùng phía)
$\widehat{ACD}=180^0-\widehat{BAC}=180^0-40^0=140^0$
b.
$AB\parallel CD$ nên:
$\widehat{ACH}=\widehat{CAB}=40^0$ (so le trong)
$CD\parallel EG$ nên:
$\widehat{HCE}=\widehat{CEG}=50^0$ (so le trong)
$\Rightarrow \widehat{ACH}+\widehat{HCE}=40^0+50^0$
Hay $\widehat{ACE}=90^0$
a: Xét ΔACF và ΔAED có
AC=AE
\(\widehat{A}\) chung
AF=AD
Do đó: ΔACF=ΔAED
Thi...?
chia bài ra đi ,dài vaizz