Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(f\left(-x\right)=-x+\left|-x\right|=-x+\left|x\right|< >f\left(x\right)\)
Vậy: Hàm số không chẵn cũng không lẻ
b: \(f\left(-x\right)=-x-\left|-x\right|=-x-\left|x\right|< >f\left(x\right)\)
Vậy: Hàm số không chẵn cũng không lẻ
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
vì \(\left|x+y-z\right|=95\Rightarrow\orbr{\begin{cases}x+y-z=95\\x+y-z=-95\end{cases}}\)
th1: x+y-z=95
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=150\)
\(\frac{x}{\frac{1}{2}}=150\Rightarrow x=75\)
\(\frac{y}{\frac{1}{3}}=150\Rightarrow y=50\)
\(\frac{z}{\frac{1}{5}}=150\Rightarrow z=30\)
th2: x+y-z=-95
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=-\frac{95}{\frac{19}{30}}=-150\)
\(\frac{x}{\frac{1}{2}}=-150\Rightarrow x=-75\)
\(\frac{y}{\frac{1}{3}}=-150\Rightarrow y=-50\)
\(\frac{z}{\frac{1}{5}}=-150\Rightarrow z=-30\)
vậy x=75, y=50,z=30
hay x=-75, y=-50, x=-30
\(xy-2x+y+1=0\)
\(\Rightarrow xy-2x+y-2=-1\)
\(\Rightarrow x\left(y-2\right)+1\left(y-2\right)=-1\)
\(\Rightarrow\left(x+1\right)\left(y-2\right)=-1\)
\(\Rightarrow x+1;y-2\inƯ\left(-1\right)\)
\(Ư\left(-1\right)=\left\{\pm1\right\}\)
Xét ước
\(\left|x-3\right|=2x+1\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2x+1\left(đk:x\ge3\right)\\-x+3=2x+1\left(đk:x< 3\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2x+4\\-x=2x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-x=4\Rightarrow x=-4\left(KTM\right)\\x=\dfrac{2}{3}\left(TM\right)\end{matrix}\right.\)
Bạn ơi, cho mk hỏi sao rằng xy- 2x +y - 2 lại bằng -1 vậy bạn
a) Ta có: \(\left|x+\dfrac{19}{5}\right|\ge0\forall x\in Q\)
\(\left|y+\dfrac{2017}{2018}\right|\ge0\forall y\in Q\)
\(\left|z-2019\right|\ge0\forall x\in Q\)
\(\Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|\ge0\forall x,y,z\in Q\)
Dấu \("="\) xảy ra khi \(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{2017}{2018}\right|=0\\\left|z-2019\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-2017}{2018}\\z=2019\end{matrix}\right.\).
b) Lại có:
\(\left|x-\dfrac{9}{5}\right|\ge0\forall x\in Q\)
\(\left|y+\dfrac{3}{4}\right|\ge0\forall y\in Q\)
\(\left|z+\dfrac{7}{2}\right|\ge0\forall z\in Q\)
\(\Rightarrow\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,zQ\)
Mà theo đề bài:
\(\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\le0\forall\)
\(\Rightarrow\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-\dfrac{9}{5}\right|=0\\\left|y+\dfrac{3}{4}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{5}\\y=\dfrac{-3}{4}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy .....
a) \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|=0\)
Ta có: \(\left|x+\dfrac{19}{5}\right|\ge0;\left|y+\dfrac{2017}{2018}\right|\ge0;\left|z-2019\right|\ge0\)
Để \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|=0\) thì:
\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{2017}{2018}\right|=0\\\left|z-2019\right|=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-2017}{2018}\\z=2019\end{matrix}\right.\)
Vậy............................
b) Ta có: \(\left|x-\dfrac{9}{5}\right|\ge0;\left|y+\dfrac{3}{4}\right|\ge0;\left|z+\dfrac{7}{2}\right|\ge0\)
Mà \(\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\le0\) thì:
\(\left|x-\dfrac{9}{5}\right|=\left|y+\dfrac{3}{4}\right|=\left|z+\dfrac{7}{2}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{5}\\y=\dfrac{-3}{4}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy............................