Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Ta có : M là Trung điểm của AD
N là trung diểm của BC
\(\Rightarrow\)MN là dường trung bình của hình thang
Theo định lí dường trung bình của hình thang( học tới đó thì cm minh ngay)
Thì MN=(AB+CD)/2
b/k có câu nào cho cm như vậy hết
Cho hình thang cân ABCD như hình vẽ với AH và BK là đường cao. Áp dụng pitago ta có:
\(\hept{\begin{cases}AC^2=AH^2+HC^2\\AD^2=AH^2+HD^2\end{cases}}\)
\(\Rightarrow AC^2-AD^2=HC^2-HD^2=\left(HC+HD\right)\left(HC-HD\right)=DC.AB\)
\(\Rightarrow AC^2=AD^2+AB.DC\)
PS: Bài có mấy dòng tự làm đi chứ nhok
bình phương của bn là tổng 2 bình phương đúng ko ?
nếu vậy thì đề bài là 2 lần tích 2 đáy chứ ????
a. -Xét △AID: AD//BJ (ABCD là hình bình hành).
\(\Rightarrow\dfrac{IA}{IJ}=\dfrac{ID}{IB}\) (định lí Ta-let). (1)
-Xét △AIB: AB//DK (ABCD là hình bình hành).
\(\Rightarrow\dfrac{IK}{IA}=\dfrac{ID}{IB}\) (định lí Ta-let). (2)
-Từ (1), (2) suy ra: \(\dfrac{IA}{IJ}=\dfrac{IK}{IA}\) nên \(IA^2=IK.IJ\).
b. -Có: \(\dfrac{IA}{IJ}=\dfrac{IK}{IA}\) (cmt)
\(\Rightarrow\dfrac{IA+IJ}{IJ}=\dfrac{IK+IA}{IA}\)
\(\Rightarrow\dfrac{AJ}{IJ}=\dfrac{AK}{IA}\)
\(\Rightarrow\dfrac{AK}{IA}=\dfrac{AJ+AK}{IJ+IA}=\dfrac{AJ+AK}{AJ}\)
\(\Rightarrow\dfrac{1}{IA}=\dfrac{AJ+AK}{AJ.AK}\)
\(\Rightarrow\dfrac{1}{IA}=\dfrac{1}{AK}+\dfrac{1}{AJ}\)
bạn có cần thiết phải nói vậy ko
thui bn nghỉ học lun đi làm MC đủ sống rùi