Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
\(\left[\frac{2}{3}\right]=0\)
\(\left[\frac{53}{4}\right]=\left[13\frac{1}{4}\right]=13\)
\(\left[-2021,01\right]=-2022\)
\(\left[\frac{-39}{5}\right]=\left[-7\frac{4}{5}\right]=-8\)
-1/7 . 7/3 ; -4 ; -43/10
=-7/3 ; -4 ; -43/10
nhớ tính lại từ đây nha=-7/3 ; -4/1 ; -43/10
= -7/3 . -1/4 ; -43 /10
= 8/12; -43/10
=8/12 . -10/43
= -80/516
\(\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^2}+\frac{100}{3^4}\)
Có phải z ko hả bạn
Mk ko hiểu câu đầu của bạn là j nhưng theo ý kiến của bạn trên thì mk giải thế này nhé:
Đặt P = \(\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}\)
=> \(\frac{1}{3}\)P = 3 . ( \(\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}\))
=> \(\frac{1}{3}\)P = \(\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}+\frac{100}{3^5}\)
=> \(\frac{1}{3}P-P=-\frac{2}{3}P\) =\(\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}+\frac{100}{3^5}\)--- \(\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}\)
=> -\(-\frac{2}{3}P=\frac{100}{3^5}-\frac{100}{3}\)
==> P = \(-\frac{2}{3}.\left(\frac{100}{3^5}-\frac{100}{3}\right)\)
\(\left[6,5\right].\left[\frac{2}{3}\right]+\left[2\right].7,2+\left[8,4\right]-6,6=6.0+2.7,2+8,4-6,6\)
\(=16,2\)
Ta có: \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
...
\(\frac{1}{2014^2}<\frac{1}{2013.2014}\)
Cộng vế theo vế ta được
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}<1\)
Ta có : \(A\)\(\ge0\) và \(A<1\left(cmt\right)\)
=> [A]=0
Giải
xét vế A :
thay x=3,7 vào biểu thức ta có:
A=[ 3,7 ]+[ 3,7+1/5]+[3,7+2/5]+[3,7+3/5]+[ 3,7+4/5]
=(3.7*5)+(1/5+2/5+3/5+4/5)=20,5
xét vế B
thay x=3,7 vào biểu thức ta có
B=[5x]
=>b=[5*3.7]=5.3,7=18,5
+, ta có A=20,5 ; B=18,5
=>A>B
\(\left[\dfrac{2}{3}\right]=0\)
\(\left[\dfrac{53}{4}\right]=13\)
\(\left[-2021.01\right]=-2021\)
\(\left[-\dfrac{39}{5}\right]=-7\)