Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy \(87=1.87=3.29\) nên ta xét 2TH
TH1: \(\left\{{}\begin{matrix}S\left(n\right)=1\\S\left(n+1\right)=87\end{matrix}\right.\)
Vì \(S\left(n\right)=1\) nên \(n=100...00\), do đó \(n+1=100...01\) nên \(S\left(n+1\right)=2\), mâu thuẫn.
TH2: \(\left\{{}\begin{matrix}S\left(n\right)=87\\S\left(n+1\right)=1\end{matrix}\right.\)
Vì \(S\left(n+1\right)=1\) nên \(n+1=100...00\), do đó \(n=999...99\) chia hết cho 9, dẫn đến \(S\left(n\right)⋮9\), mâu thuẫn với \(S\left(n\right)=87\)
TH3: \(\left\{{}\begin{matrix}S\left(n\right)=3\\S\left(n+1\right)=29\end{matrix}\right.\)
Vì \(S\left(n\right)=3\) nên \(n⋮3\) \(\Rightarrow n+1\) chia 3 dư 1 \(\Rightarrow S\left(n+1\right)\) chia 3 dư 1. Thế nhưng 29 chia 3 dư 2, vô lý.
TH4: \(\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) . Ta lại xét các TH:
TH4.1: \(n+1=10...010...01\) hoặc \(200...01\) hoặc \(100...2\). Khi đó trong tất cả các TH thì ta đều có \(S\left(n\right)=2\), không thỏa mãn.
TH4.2: \(n+1=10...010...010...0\) hoặc \(200...0100...0\) hoặc \(100...020...0\) hoặc \(300...00\). Khi đó trong tất cả các TH thì ta đều có\(S\left(n\right)=2+9m\left(m\inℕ\right)\) với m là số chữ số 9 có trong n. Để chọn được số nhỏ nhất, ta chỉ việc lược bỏ tất cả các số 0 ở giữa và cho \(m=3\) để có \(S\left(n\right)=29\). Vậy, ta tìm được \(n=11999\) (thỏa mãn)
Vậy, số cần tìm là 11999.
dễ thấy để S(n) và S(n+1) đều chia hết cho 1 số thì đuôi của n kết thúc bằng các số 9.
giả sử n có x số 9 cuối(ta tìm x nhỏ nhất)
khi đó n có dạng a 99...9 (x số 9)
=> n+1=b00...0 ( x+1 số 0) với b=a+1
do S(n) ≡ S(n+1) (mod 7) => a+9x ≡ b (mod 7) => 9x ≡ 1 (mod 7)
=> x=4
=> n=a9999
mà S(n) chia hết cho 7 => a=6 => n=69999 là nhỏ nhất thỏa mãn :D
Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi
\(S\left(n\right).S\left(n+1\right)=3.29=1.87\)
- Nếu \(S\left(n\right)=1\Rightarrow\) \(n\) có dạng \(100...0\) \(\Rightarrow S\left(n+1\right)=2\ne87\) (loại)
\(\Rightarrow S\left(n\right).S\left(n+1\right)=3.29\)
Gọi \(n\) có dạng \(\overline{a_1a_2...a_k}\) với \(a_i\in N;a_1\ne0\)
- Nếu \(a_k\ne9\Rightarrow S\left(n+1\right)=S\left(n\right)+1\Rightarrow S\left(n\right)\) và \(S\left(n+1\right)\) luôn khác tính chẵn lẻ \(\Rightarrow S\left(n\right).S\left(n+1\right)\) là một số chẵn, mà 87 lẻ \(\Rightarrow\) loại
\(\Rightarrow a_k=9\) \(\Rightarrow S\left(n\right)>S\left(n+1\right)\Rightarrow\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) \(\Rightarrow S\left(n\right)-S\left(n+1\right)=26\)
Giả sử tận cùng bằng \(x\) số 9 \(\Rightarrow n=\overline{A9...9}\) với A có tận cùng khác 9
\(\Rightarrow n+1=\overline{B0...0}\) (x số 0 và \(B=A+1\))
\(\Rightarrow\left\{{}\begin{matrix}S\left(n\right)=S\left(A\right)+9.x\\S\left(n+1\right)=S\left(B\right)=S\left(A+1\right)=S\left(A\right)+1\end{matrix}\right.\)
\(\Rightarrow S\left(n\right)-S\left(n+1\right)=9x-1=26\Rightarrow9x=27\Rightarrow x=3\)
Vậy \(n=\overline{A999}\Rightarrow S\left(n\right)=S\left(A\right)+27=29\Rightarrow S\left(A\right)=2\)
Mà \(n\) nhỏ nhất khi \(A\) nhỏ nhất, ta có số nhỏ nhất có tổng các chữ số bằng 2 là 2 \(\Rightarrow A=2\)
\(\Rightarrow n=2999\)