Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
ĐKXĐ: \(\left\{{}\begin{matrix}cos3x\ne0\\tan3x\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{6}+\frac{k\pi}{3}\\x\ne\frac{\pi}{12}+\frac{k\pi}{3}\end{matrix}\right.\)
2.
\(-1\le cos\frac{x}{2}\le1\Rightarrow\sqrt{2}\le\sqrt{cos\frac{x}{2}+3}\le2\)
\(\Rightarrow3\sqrt{2}-2\le y\le4\)
3.
a. \(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=sin3x\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=sin3x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=2x-\frac{\pi}{6}+k2\pi\\3x=\frac{7\pi}{6}-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. \(-4\left(1-cos^2x\right)+8\left(1-cosx\right)-1=0\)
\(\Leftrightarrow4cos^2x-8cosx+4=0\)
\(\Leftrightarrow cosx=1\)
\(\Leftrightarrow...\)
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
d/
\(0\le cos^2x\le1\Rightarrow5\le y\le8\)
\(y_{min}=5\) khi \(cosx=0\)
\(y_{max}=8\) khi \(cosx=\pm1\)
e/
\(0\le\left|cos2x\right|\le1\)
\(\Rightarrow-2\le y\le1\)
\(y_{min}=-2\) khi \(cos2x=\pm1\)
\(y_{max}=1\) khi \(cos2x=0\)
f/
\(0\le sin^23x\le1\Rightarrow\sqrt{3}-2\le y\le0\)
\(y_{min}=\sqrt{3}-2\) khi \(sin2x=0\)
\(y_{max}=0\) khi \(sin2x=\pm1\)
a/ \(-1\le sin2x\le1\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(sin2x=1\)
\(y_{max}=5\) khi \(sin2x=-1\)
b/ \(-1\le cos\left(x-\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le5\)
\(y_{min}=-3\) khi \(cos\left(x-\frac{\pi}{3}\right)=-1\)
\(y_{max}=5\) khi \(cos\left(x-\frac{\pi}{3}\right)=1\)
c/ \(-1\le cosx\le1\Rightarrow0\le\sqrt{cosx+1}\le\sqrt{2}\)
\(\Rightarrow2\le y\le2+\sqrt{2}\)
\(y_{min}=2\) khi \(cosx=-1\)
\(y_{max}=2+\sqrt{2}\) khi \(cosx=1\)
Cho e hỏi là vì sao khúc cuối có dấu bằng mà trên đề k có dấu bằng ạ?
Vì mình lấy giá trị nguyên bạn
Chính xác là \(-\frac{1}{4}< k< \frac{2020-\frac{\pi}{2}}{2\pi}\)
\(\Rightarrow-0,25< k< 321,243\) (1)
Nhưng k nguyên nên chỉ cần lấy khoảng ở số nguyên gần nhất, tức là \(0\le k\le321\)
16.
\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)
17.
\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)
18.
\(y'=3x^2-2x\)
\(y'\left(-2\right)=16;y\left(-2\right)=-12\)
Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)
19.
\(y'=-\frac{1}{x^2}=-x^{-2}\)
\(y''=2x^{-3}=\frac{2}{x^3}\)
20.
\(\left(cotx\right)'=-\frac{1}{sin^2x}\)
21.
\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)
22.
\(lim\left(3^n\right)=+\infty\)
11.
\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)
12.
\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)
13.
\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)
14.
\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)
15.
\(y'=4\left(x-5\right)^3\)
1.
\(\left\{{}\begin{matrix}cos2x\ne0\\\sqrt{3}sin2x-cos2x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x\ne\frac{\pi}{2}+k\pi\\\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{4}+\frac{k\pi}{2}\\sin\left(2x-\frac{\pi}{6}\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{4}+\frac{k\pi}{2}\\x\ne\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)
2.
\(\left\{{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{6}+k\pi\\x\ne k2\pi\end{matrix}\right.\)
3.
\(sin4x\ne-1\Leftrightarrow4x\ne-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x\ne-\frac{\pi}{8}+\frac{k\pi}{2}\)
a/ Điều kiện: 1 - sin2x \(\ne\) 0
<=> sin2x \(\ne1\)
<=> \(x\ne\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)
TXĐ: D = R\ {\(\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)}
b. ĐKXĐ cos(4x+\(\dfrac{\pi}{3}\)) \(\ne\)0 => 4x+\(\dfrac{\pi}{3}\)= \(\dfrac{\pi}{2}\)+k\(\pi\) => x=\(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z
==> TXĐ: D= R\ { \(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z }
Đáp án D
Ta có:
Vậy M = 2