√11−√2 và √14−√5
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

Ta có:

\(\sqrt{2016}-\sqrt{2017}=\frac{\left(\sqrt{2016}-\sqrt{2017}\right)\left(\sqrt{2016}+\sqrt{2017}\right)}{\sqrt{2016}+\sqrt{2017}}\)

\(=\frac{2016-2017}{\sqrt{2016}+\sqrt{2017}}=-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2017}-\sqrt{2018}=\frac{\left(\sqrt{2017}-\sqrt{2018}\right)\left(\sqrt{2017}+\sqrt{2018}\right)}{\sqrt{2017}+\sqrt{2018}}\)

\(=\frac{2017-2018}{\sqrt{2017}+\sqrt{2018}}=-\frac{1}{\sqrt{2017}+\sqrt{2018}}\)

Ta thấy rằng:

\(\sqrt{2018}>\sqrt{2016}\)

\(\Leftrightarrow\sqrt{2017}+\sqrt{2018}>\sqrt{2016}+\sqrt{2017}\)

\(\Leftrightarrow\frac{1}{\sqrt{2017}+\sqrt{2018}}< \frac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\Leftrightarrow-\frac{1}{\sqrt{2017}+\sqrt{2018}}>-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)

Vậy \(\sqrt{2017}-\sqrt{2018}>\sqrt{2016}-\sqrt{2017}\)

14 tháng 10 2019

bawngf nhau

24 tháng 6 2018

a) Ta có:

\(6\sqrt{5}=\sqrt{5\cdot36}=\sqrt{180}\)

\(5\sqrt{6}=\sqrt{6\cdot25}=\sqrt{200}\)

Mà \(\sqrt{180}< \sqrt{200}\)

Vậy: \(6\sqrt{5}< 5\sqrt{6}\)

x) Ta có: \(\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\)

Công hai vế của BĐT cho 3: 

Suy ra: \(\sqrt{8}+3< 3+3=6\)

Vậy: \(\sqrt{8}+3< 6\)

b) Ta có:

\(\sqrt{2\sqrt{3}}=\sqrt[4]{12}\)

Tương tự: \(\sqrt{3\sqrt{2}}=\sqrt[4]{18}\)

Mà \(\sqrt[4]{18}>\sqrt[4]{12}\)

Vậy.....

d) Ta có: 

\(2\sqrt{5}-5=\sqrt{5}+\sqrt{5}-5=\left(\sqrt{5}-2\right)+\left(\sqrt{5}-3\right)>\sqrt{5}-3\)

Vậy ......

e) Ta có: 

\(\sqrt{2}-2=\frac{3\sqrt{2}-6}{3}\)

\(\sqrt{3}-3=\frac{2\sqrt{3}-6}{2}\)

Mà \(3\sqrt{2}>2\sqrt{3}\)

Vậy .....

f) ........... Đang thinking

24 tháng 10 2019

đang dùng máy tínhmaf

14 tháng 9 2020

a, 2020 lớn hơn

14 tháng 9 2020

a)\(\left(\sqrt{2019.2021}\right)^2=2019.2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2\)

=> \(\sqrt{2019.2021}< 2020\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>5+2\sqrt{4}=5+2.2=9\)

=> \(\sqrt{2}+\sqrt{3}>3\)

c) \(9+4\sqrt{5}=4+4\sqrt{5}+5=\left(2+\sqrt{5}\right)^2>\left(2+\sqrt{4}\right)^2=\left(2+2\right)^2=16\)

=> \(9+4\sqrt{5}>16\)

d) \(\sqrt{11}-\sqrt{3}>\sqrt{9}-\sqrt{1}=3-1=2\)

=> \(\sqrt{11}-\sqrt{3}>2\)

1) Ta có: \(\sqrt{11}-\sqrt{2}=\frac{\left(\sqrt{11}-\sqrt{2}\right)\left(\sqrt{11}+\sqrt{2}\right)}{\sqrt{11}+\sqrt{2}}\)

\(=\frac{11-2}{\sqrt{11}+\sqrt{2}}=\frac{9}{\sqrt{11}+\sqrt{2}}\)

Ta có: \(\sqrt{14}-\sqrt{5}=\frac{\left(\sqrt{14}-\sqrt{5}\right)\left(\sqrt{14}+\sqrt{5}\right)}{\sqrt{14}+\sqrt{5}}\)

\(=\frac{14-5}{\sqrt{14}+\sqrt{5}}=\frac{9}{\sqrt{14}+\sqrt{5}}\)

Ta có: \(\left(\sqrt{11}+\sqrt{2}\right)^2=11+2\cdot\sqrt{22}+2=13+2\sqrt{22}\)

\(\left(\sqrt{14}+\sqrt{5}\right)^2=14+2\cdot\sqrt{70}+5=19+2\sqrt{70}=13+2\sqrt{70}+6\)

Ta có: \(2\sqrt{22}< 2\sqrt{70}\)

\(\Leftrightarrow13+2\sqrt{22}< 13+2\sqrt{70}\)

\(13+2\sqrt{70}< 19+2\sqrt{70}\)

nên \(13+2\sqrt{22}< 19+2\sqrt{70}\)

\(\Leftrightarrow\left(\sqrt{11}+\sqrt{2}\right)^2< \left(\sqrt{14}+\sqrt{5}\right)^{^2}\)

\(\Leftrightarrow\sqrt{11}+\sqrt{2}< \sqrt{14}+\sqrt{5}\)

\(\Leftrightarrow\frac{9}{\sqrt{11}+\sqrt{2}}>\frac{9}{\sqrt{14}+\sqrt{5}}\)

hay \(\sqrt{11}-\sqrt{2}>\sqrt{14}-\sqrt{5}\)

2) Ta có: \(\left(\sqrt{5}+\sqrt{7}\right)^2=5+2\cdot\sqrt{35}+7=12+2\sqrt{35}=12+\sqrt{140}\)

\(\left(2\sqrt{6}\right)^2=4\cdot6=24=12+12=12+\sqrt{144}\)

\(12+\sqrt{140}< 12+\sqrt{144}\)

nên \(\left(\sqrt{5}+\sqrt{7}\right)^2< \left(2\sqrt{6}\right)^2\)

hay \(\sqrt{5}+\sqrt{7}< 2\sqrt{6}\)

4 tháng 7 2018

1)  \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)

\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)

2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)

\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)

3)  \(2=\sqrt{4}>\sqrt{3}\)

\(\Rightarrow\)\(2-1>\sqrt{3}-1\)

hay  \(1>\sqrt{3}-1\)

4)  \(9-4\sqrt{5}< 16\)

5) \(\sqrt{2}>\sqrt{1}=1\)

\(\Rightarrow\)\(\sqrt{2}+1>2\)

5 tháng 7 2018

Cảm ơn bạn nhiều nha!

1 tháng 8 2018

a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                              \(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)

                                                                \(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)

Vậy x < y

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)