Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc dòng nước là x (km/h) (x>0)
=> vận tốc xuôi dòng là x+12;
vận tốc ngược dòng là x-12
Thời gian xuôi dòng là 30/12+x;
ngược dòng là 30/x-12
Theo đề bài: 30/12+x + 30/x-12 = 16/3
=> (360 - 30x + 360 + 30x) / (144-x^2) = 16/3
=> 720/(144-x^2) = 16/3
=> 144-x^2 = 720 : 16/3 = 135
=> x^2 = 144 - 135 = 9
=> x = 3 (x>0)
Vậy vận tốc dòng nước là 3 km/h
-Gọi khoảng cách giữa bến A và bến B là x (km) (x>0).
-Vận tốc của ca nô ngược dòng là: \(36-3-3=30\) (km/h).
-Thời gian đi xuôi là: \(\dfrac{x}{36}\left(h\right)\)
-Thời gian đi ngược là: \(\dfrac{x}{30}\left(h\right)\)
-Theo đề bài ta có phương trình sau:
\(\dfrac{x}{30}-\dfrac{x}{36}=\dfrac{2}{3}\)
\(\Leftrightarrow x\left(\dfrac{1}{30}-\dfrac{1}{36}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow x.\dfrac{1}{180}=\dfrac{2}{3}\)
\(\Leftrightarrow x=120\left(nhận\right)\)
-Vậy khoảng cách giữa bến A và bến B là 120 km.
Gọi khoảng cách giữa AB là x(km).
Thời gian cano đi xuôi là: x/30(h)
Vận tốc cano ngược dòng là 20km
Vậy thời gian di ngược là x/20(h)
Thời gian xuôi ít hơn tg ngược 1h20'=4/3h nên ta có pt x/30+4/3=x/20
x = 80km
gọi vận tốc riêng ca nô là x(km/h)(x>3)
đổi \(20'=\dfrac{1}{3}h\)
thời gian xuôi dòng \(\dfrac{40}{x+3}\left(h\right)\)
thời gian ngược dòng \(\dfrac{40}{x-3}\left(h\right)\)
\(=>\dfrac{40}{x-3}-\dfrac{40}{x+3}=\dfrac{1}{3}=>\left\{{}\begin{matrix}x1=x=27\left(tm\right)\\x2=x=-27\left(loai\right)\end{matrix}\right.\)
Bài 1.
Gọi vận tốc thực của ca nô là x( km/h , x > 2 )
=> Vận tốc khi xuôi dòng của ca nô = x + 2 ( km/h )
Vận tốc khi ngược dòng của ca nô = x - 2 ( km/h )
Thời gian đi xuôi dòng ( thời gian đi ) = \(\frac{35}{x+2}\)( giờ )
Thời gian đi ngược dòng ( thời gian về ) = \(\frac{35}{x-2}\)( giờ )
Thời gian lúc về nhiều hơn thời gian lúc đi 1 giờ
=> Ta có phương trình : \(\frac{35}{x-2}-\frac{35}{x+2}=1\)
\(\Leftrightarrow\frac{35\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{35\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=1\)
\(\Leftrightarrow\frac{35x+70-35x+70}{\left(x-2\right)\left(x+2\right)}=1\)
\(\Leftrightarrow\frac{140}{\left(x-2\right)\left(x+2\right)}=1\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=140\)
\(\Leftrightarrow x^2-4=140\)
\(\Leftrightarrow x^2=144\)
\(\Leftrightarrow x=\pm12\)
Vì x > 2 => x = 12
Vậy vận tốc thực của ca nô là 12km/h
Bài 2.
Gọi độ dài quãng đường AB là x ( km, x > 0 )
Vận tốc lúc về = 60 + 20 = 80( km/h )
Thời gian lúc đi = x/60 ( giờ )
Thời gian lúc về = x/80( giờ )
Thời gian về sớm hơn thời gian đi 1 giờ
=> Ta có phương trình : x/60 - x/80 = 1
<=> x( 1/60 - 1/80 ) = 1
<=> x . 1/240 = 1
<=> x = 240 ( tmđk )
Vậy quãng đường AB dài 240km
Bài 1:
Gọi vận tốc thực của ca nô là x(km/h; x>2)
=>Vận tốc xuôi dòng là x+2(km/h)
Vận tốc ngược dòng là x-2(km/h)
Thời gian xuôi dòng là \(\frac{35}{x+2}\)
Thời gian ngược dòng là \(\frac{35}{x-2}\)
Vì thời gian lúc về nhiều hơn thời gian lúc đi là 1 giờ nên ta có phương trình:
\(\frac{35}{x-2}-\frac{35}{x+2}\)=1
<=>\(\frac{35\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{35\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
<=>35(x+2)-35(x-2)=(x-2)(x+2)
<=>35x+70-35x+70=x2-4
<=>140=x2-4
<=>140+4=x2
<=>144=x2
<=>x=12(thỏa mãn)
Vậy vân tốc thực của ca nô là 12(km/h)
Bài 2:
Vận tốc lúc về là:60+20=80(km/h)
Gọi thời gian lúc đi là x(giờ; x>0)
=>Thời gian lúc về là x-1(giờ)
Quãng đường lúc đi là 60x(km)
Quãng đường lúc về là 80(x-1)(km)
Vì quãng đường AB không đổi nên ta có phương trình:
60x=80(x-1)
<=>60x=80x-80
<=>80=80x-60x
<=>80=20x
<=>x=4(thỏa mãn)
Vậy quãng đường AB dài: 60.4=240(km)
Bạn ơi bài 66: từ B trở về A với vận tốc ko đổi hay là khác ?
BẠN XEM KĨ ĐỀ
Gọi x (km) là độ dài quãng đường AB (x > 0)
Vận tốc khi đi từ A đến B: 20 - 5 = 15 (km/h)
Vận tốc khi đi từ B về A: 20 + 5 = 25 (km/h)
Thời gian khi đi từ A đến B: x/15 (h)
Thời gian khi đi từ B về A: x/25 (h)
2 giờ 40 phút = 8/3 (h)
Theo đề bài, ta có phương trình
x/15 - x/25 = 8/3
5x - 3x = 8.25
2x = 200
x = 200 : 2
x = 100 (nhận)
Vậy khoảng cách từ A đến B là 100 km
TK
refer