K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

gọi x (Km/ h)là vận tốc của ca nô khi nước yên lặng

vận tốc khi đi suôi dòng là x + 3

vận tốc khi đi ngực dòng là x - 3

thời gian khi đi suôi dòng là \(\dfrac{30}{x+3}\)

thời gian khi đi ngực dòng là \(\dfrac{30}{x-3}\)

thời gian nghỉ là 40 phút = \(\dfrac{40}{60}\) = \(\dfrac{2}{3}\) giờ

vì tổng thời gian từ lúc đi đến lúc trở về là 6 giờ

nên ta có phương trình :

\(\dfrac{30}{x+3}\)+\(\dfrac{30}{x-3}\)+\(\dfrac{2}{3}\) = 6

\(\Leftrightarrow\) \(\dfrac{30.\left(x-3\right)+30.\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\) +\(\dfrac{2}{3}\) = 6

\(\Leftrightarrow\) \(\dfrac{60x}{x^2-9}\)+\(\dfrac{2}{3}\) = 6\(\Leftrightarrow\) \(\dfrac{60x}{x^2-9}\)= \(\dfrac{16}{3}\)

\(\Leftrightarrow\) 180x = 16x2 - 144\(\Leftrightarrow\) 16x2 -180x -144 = 0

\(\Leftrightarrow\) 4x2 - 45x -36 = 0

giải \(\Delta\) ta có 2 nghiệm :x1=12 (tmđk) ; x2=-\(\dfrac{3}{4}\) (loại)

vậy vận tốc khi nước yên lặng là 12(Km/h)

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

15 tháng 7 2019

Gọi x (km/h) là vận tốc của ca nô khi nước yên lặng.

Điều kiện: x > 3

Khi đó vận tốc khi đi xuôi dòng trên sông là x + 3 (km/h)

vận tốc khi đi ngược dòng trên sông là x – 3 (km/h)

thời gian ca nô đi xuôi dòng là 30/(x + 3) (giờ)

thời gian ca nô đi ngược dòng là 30/(x - 3) (giờ)

thời gian ca nô nghỉ ở B là 40 phút = 2/3 (giờ)

Theo đề bài, ta có phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giá trị x = - 3/4 không thỏa mãn điều kiện bài toán.

Vậy vận tốc của ca nô khi nước yên lặng là 12 km/h.

6 tháng 10 2019

Gọi vận tốc thực của canô là x (km/h) (x > 3)

Gọi vận tốc xuôi dòng là : x + 3 (km/h)

Gọi vận tốc khi ngược dòng là : x – 3 (km/h)

Giải bài 49 trang 59 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do kể từ lúc khởi hành đến khi về tới bến A hết tất cả 6 h nên ta có:

Giải bài 49 trang 59 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ 30.3 (x- 3) + 30.3. (x+ 3) + 2(x+ 3). (x – 3) = 6.3.(x+3).(x – 3)

⇔ 90.(x – 3) + 90(x+ 3)+ 2(x2 – 9) = 18 (x2 -9)

⇔ 90x – 270+ 90x + 270 + 2x2 – 18 = 18x2 – 162

⇔ 180x + 2x2 – 18 = 18x2 – 162

⇔ 16x2 – 180x -144= 0

⇔ 4x2 –45x – 36 = 0

Có a=4; b= - 45, c= - 36

∆= ( -45)2 – 4.4.(- 36)= 2601 > 0

Phương trình đã cho có hai nghiệm là:

Giải bài 49 trang 59 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy vận tốc của canô trong nước yên lặng là 12km/h.

9 tháng 7 2017

Gọi vận tốc thực của canô là x (km/h) (x > 3)

Gọi vận tốc xuôi dòng là : x + 3 (km/h)

Gọi vận tốc khi ngược dòng là : x – 3 (km/h)

Giải bài 49 trang 59 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do kể từ lúc khởi hành đến khi về tới bến A hết tất cả 6 h nên ta có:

Giải bài 49 trang 59 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ 30.3 (x- 3) + 30.3. (x+ 3) + 2(x+ 3). (x – 3) = 6.3.(x+3).(x – 3)

⇔ 90. ( x − 3 ) + 90 ( x + 3 ) + 2 x 2 − 9 = 18 x 2 − 9 ⇔ 90 x − 270 + 90 x + 270 + 2 x 2 − 18 = 18 x 2 − 162 ⇔ 180 x + 2 x 2 − 18 = 18 x 2 − 162 ⇔ 16 x 2 − 180 x − 144 = 0 ⇔ 4 x 2 − 45 x − 36 = 0

Có a=4; b= - 45, c= - 36

∆ =   (   - 45 ) 2   –   4 . 4 . ( -   36 ) =   2601   >   0

Phương trình đã cho có hai nghiệm là:

Giải bài 49 trang 59 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy vận tốc của canô trong nước yên lặng là 12km/h.

29 tháng 5 2018

Gọi vận tốc thực của cano là x(km/h;x>4)
vận tốc xuôi dòng của cano là x+4(km/h)
=> thời gian xuôi dòng của cano là 30/(x+4) (h)
vận tốc ngược dòng của cano là x-4(km/h)
=> thời gian tốc ngược dòng của cano là 30/(x-4) (h)
mà thời gian đi lẫn về của cano là 4 h
=> 30/(x+4)+30/(x-4)=4(chỗ này bạn giải được)
<=> x = 16 và x=-1(loại)
=> vận tốc thực của cano là 16km/h
vậy vận tốc thực của cano là 16km/h