Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là ab(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a< 10\\0< b< 10\end{matrix}\right.\))
Vì số đó gấp 9 lần tổng các chữ số của nó nên ta có phương trình:
\(10a+b=9\left(a+b\right)\)
\(\Leftrightarrow10a+b=9a+9b\)
\(\Leftrightarrow10a+b-9a-9b=0\)
\(\Leftrightarrow a-8b=0\)(1)
Vì khi đổi chỗ hai chữ số thì ta được số mới kém số ban đầu 63 đơn vị nên ta có phương trình:
\(10b+a+63=10a+b\)
\(\Leftrightarrow10b+a+63-10a-b=0\)
\(\Leftrightarrow-9a+9b=-63\)
\(\Leftrightarrow-9\left(a-b\right)=-9\cdot7\)
\(\Leftrightarrow a-b=7\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-8b=0\\a-b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-7\\a=7+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=7+1=8\end{matrix}\right.\)
Vậy: Số ban đầu là 81
Gọi số cần tìm là \(\overline{ab}\)
Theo bài ta có :
\(\overline{ab}=9\left(a+b\right)\)
\(\Leftrightarrow10a+b=9a+9b\)
\(\Leftrightarrow a=8b\)
\(\Leftrightarrow a-8b=0\) \(\left(1\right)\)
Lại có : Khi đổi chỗ 2 chữ số thì đc số mới kém số ban đầu 2 đơn vị
\(\Leftrightarrow\overline{ab}-\overline{ba}=63\)
\(\Leftrightarrow10a+b-10b-a=63\)
\(\Leftrightarrow9a-9b=0\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\)
Vậy.....
Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Theo bài ra ta có: a - b =5 (1)
nếu viết xen chữ số 0 vào giữa số hàng chục và hàng đơn vị thì số mới là: a0b ( có gạch ngang trên đầu)
=> a0b - ab = 630
=> 100a + 0 + b - 10a - b = 630
=> 90a = 630
=> a = 7
Thay a = 7 vào (1) ta đc b=2
Vậy số cần tìm là 72
học tốt
Gọi số cần tìm là ab, ta có:
ab + 630 = a0b
a x 10 + b + 630 = a x 100 + b
b + 630 - b = a x 100 - a x 10
630 = a x 90 \(\Rightarrow a=7\)
\(\Rightarrow b=7-5=2\)
Vậy số cần tìm là 72.
Gọi số tự nhiên đó là abc3 ; nếu bỏ chữ số tận cùng thì số mới là abc
Ta có
abc3 - abc = (1000a+100b+10c+3)-(100a+10b+c)
=> 900a+90b+9c+3=1992
=> 900a+90b+9c=1989
=> 9(100a+10b+c)=1989
=> 100a + 10b + c = 221
=> abc = 221
=> abc3 = 2213
Vậy số đó là 2213