Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`
Vì `a` và `b` là `2` đại lượng tỉ lệ thuận
`\rightarrow a=k*b`
Thay `a=3, b=33`
`\rightarrow 3=k*33`
`\rightarrow k=3 \div 33`
`\rughtarrow k=`\(\dfrac{1}{11}\)
Vậy, hệ số tỉ lệ `k=`\(\dfrac{1}{11}\)
`b,`
Khi `b=-7 \rightarrow a=`\(\dfrac{1}{11}\cdot-7=-\dfrac{7}{11}\)
`,`
Khi `a=110 \rightarrow b= 110 \div`\(\dfrac{1}{11}\)`= 1210`
Lời giải:
a. Gọi $k$ là hệ số tỉ lệ của $a$ đối với $b$. Ta có: $a=bk$
$\Rightarrow k=\frac{a}{b}=\frac{3}{33}=\frac{1}{11}$
b. Ta có: $a=\frac{b}{11}$
Khi $b=-7$ thì $a=\frac{b}{11}=\frac{-7}{11}$
c. $110=a=\frac{b}{11}\Rightarrow b=110.11=1210$
a)2 đại lượng y và x tỉ lệ thuận với nhau khi đại lượng x liên hệ với đại lượng y theo công thức y=ax ( a là hằng số khác 0)
VD:6 và 3 tỉ lệ thuận với nhau theo công thức 6=2.3
b)2 đại lượng y và x tỉ lệ nghịch với nhau khi đại lượng x liên hệ với đại lượng y theo công thức xy=a hay \(\dfrac{a}{x}=y\) ( a là hằng số khác 0)
VD: 6 và 3 tỉ lệ nghịch với nhau theo công thức 6.3=18
a)Hai đại lượng y và x tỉ lệ thuận với nhau khi đại lượng x liên hệ với đại lượng y theo công thức y=a\(\cdot\)x(a\(\ne\)0;a là hằng số)
VD:6vaf 3 tỉ lệ với nhau theo công thức 6=2\(\cdot\)3
b)Hai đại lượng y và x tỉ lệ nghịch với nhau khi 2đại lượng x,y liên hệ với nhau theo công thức xy=a hay \(\dfrac{a}{x}=y\)(a là hằng số khác 0)
VD: 6 và 3 tỉ lệ nghịch với nhau theo công thức 6,3=18
\(\text{Ta co}:a+b=c+d=1000\text{ va }\frac{a}{c}=\frac{b}{d}\)
Áp dụng dãy tỉ số = nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{1000}{1000}=1\)
\(\Rightarrow MAX:\frac{a}{c}+\frac{b}{d}=1+1=2\)
b ) (a - 1)(a + 3) âm <=> (a - 1)(a + 3) > 0 => a - 1 và a + 3 trái dấu
Mặt khác : a + 3 > a - 1 => a + 3 > 0 và a - 1 < 0
<=> a > - 3 và a < 1
Vậy - 3 < a < 1
b ) x2 - 3x > 0 <=> x2 > 3x => x > 3
Vậy với x > 3 thì x2 - 3x dương
a) \(N=0\Leftrightarrow\frac{x-1}{x}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
b) \(N< 0\Leftrightarrow\frac{x-1}{x}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
c) \(N>0\Leftrightarrow\frac{x-1}{x}>0\Leftrightarrow x-1>0\Leftrightarrow x>1\)