Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(y=x^2-2x-3=\left(x-1\right)^2-4\)
\(\left(x-1\right)^2-4>0\) khi
\(\left(x-1\right)^2>4\Rightarrow x-1>2\Rightarrow x>3\)
2/ \(y=x^2-3x-4=\left(x-\dfrac{3}{2}\right)^2-\dfrac{25}{4}\)
\(y>0\) khi
\(\left(x-\dfrac{3}{2}\right)^2>\dfrac{25}{4}\Rightarrow x-\dfrac{3}{2}>\dfrac{5}{2}\Rightarrow x>4\)
ĐKXĐ : \(x\ne-1\)
Ta có \(\frac{x^4+1}{\left(x^2+1\right)\left(x+1\right)^2}=\frac{17}{45}\Leftrightarrow\frac{\left(x^2+1\right)^2-2x^2}{\left(x^2+1\right)\left(x^2+1+2x\right)}=\frac{17}{45}\)
Đặt \(a=x^2+1\), \(b=x\) thì PT đã cho trở thành
\(\frac{a^2-2b^2}{a\left(a+2b\right)}=\frac{17}{45}\) \(\Leftrightarrow2\left(2a-5b\right)\left(7a+9b\right)=0\)
Tới đây bạn tự giải đc rồi nhé :)
\(\frac{3}{4}-\left(x+\frac{1}{2}\right)=\frac{4}{5}\)
\(\Rightarrow x+\frac{1}{2}=\frac{3}{4}-\frac{4}{5}\)
\(\Rightarrow x+\frac{1}{2}=-\frac{1}{20}\)
\(\Rightarrow x=-\frac{1}{20}-\frac{1}{2}\)
\(\Rightarrow x=\frac{-11}{20}\)
\(\Leftrightarrow\left|3x^2+x-4\right|=x^2+2-x^2-x-1=1-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x< =1\\3x^2+x-4=x^2-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< =1\\2x^2+3x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< =1\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)
Đạo hàm đi bạn :D Cho nhanh
\(y=f\left(x\right)=x^4-2x^2\)
\(\Rightarrow f'\left(x\right)=4x^3-4x\)
\(f'\left(x\right)=0\Leftrightarrow4x^3-4x=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=0\end{matrix}\right.\)
\(f\left(1\right)=-1;f\left(-2\right)=8;f\left(-1\right)=-1;f\left(0\right)=0\)
\(\Rightarrow y_{min}=-1;"="\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(y_{max}=8;"="\Leftrightarrow x=-2\)
Đặt \(x^2=t\left(0\le t\le4\right)\)
\(y=f\left(t\right)=t^2-2t\)
\(minf\left(t\right)=min\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(1\right)=-1\)
\(maxf\left(t\right)=max\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(4\right)=8\)
\(min=-1\Leftrightarrow x=\pm1\)
\(max=8\Leftrightarrow x=-2\)