K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 7: Muốn tạo thành 9 . 10 ^ -23 phân tử NH3 cần bao nhiêu phân tử H2,cần bao nhiêu phân tử N2 ,cần bao nhiêu mol N,bao nhiêu mol H2.Tạo ra bao nhiêu lít NH3 biết các khí và phản ứng xảy ra như sau:  N2 +  3H2 <-----> 2NH3Câu 8: Cho kim loại Al tác dụng với CuSO4 thu được Al2 (SO4)3 và Cua) Viết phản ứng xảy rab) Cho 12,15g Al vào dung dịch có chứa 54g CuSO4,Chất nào còn dư sau phản ứng và khối lượngc) Lọc...
Đọc tiếp

Câu 7: Muốn tạo thành 9 . 10 ^ -23 phân tử NH3 cần bao nhiêu phân tử H2,cần bao nhiêu phân tử N2 ,cần bao nhiêu mol N,bao nhiêu mol H2.Tạo ra bao nhiêu lít NH3 biết các khí và phản ứng xảy ra như sau:

 N2 +  3H2 <-----> 2NH3

Câu 8: Cho kim loại Al tác dụng với CuSO4 thu được Al2 (SO4)3 và Cu

a) Viết phản ứng xảy ra

b) Cho 12,15g Al vào dung dịch có chứa 54g CuSO4,Chất nào còn dư sau phản ứng và khối lượng

c) Lọc bỏ các chất rắn rồi đem cô cạn dung dịch thu được bao nhiêu gam muối khan

Bài 9: Dùng khí CO để khử Fe3O4 và hiđro khử Fe2O3,khối lượng sắt thu được là 226g.Khi sinh ra từ các phản ứng trên CO2 được dẫn vào nước vôi trong dư,xuất hiện 200g kết tủa trắng

a) Tính thể tích H2 và CO (đktc) đã tham gia phản ứng

b)Tính khối lượng mỗi oxit đã phản ứng

2
8 tháng 1 2016

đề đâu???bucminhlolang

9 tháng 1 2016

Ba câu đấy bạn

9 tháng 4 2016

taifile

Các yếu tố ảnh hưởng đến tốc độ phản ứng:

a) Ảnh hưởng của nồng độ.

Khi nồng độ chất phản ứng tăn, tốc độ phản ứng tăng.

Giải thích:

- Điều kiên để các chất phản ứng được với nhau là chúng phải va chạm vào nhau, tần số va chạm càng lớn thì tốc độ phản ứng  càng lớn.

- Khi nồng độ các chất phản ứng tăng, tần số va chạm tăng nên tốc độ phản ứng tăng. Tuy nhiên không phải mọi va chạm đều gây ra phản ứng tăng. Tuy nhiên không phải mọi va chạm đều gây ra phản ứng, chỉ có những va chạm có hiệu quả mới xảy ra phản ứng. Tỉ số giữa số va chạm có hiệu quả và số va chạm chung phụ thuộc vào bản chất của các chất phản ứng, nên các phản ứng khác nhau có tốc độ phản ứng không giồng nhau.

b) Ảnh hướng của áp suất.

Đối với phản ứng có chất khí tham gia, khi áp suất tăng, tốc độ phản ứng tăng.

Giải thích: Khi áp suất tăng, nồng độ chất khí tăng theo, tần số va chạm tăng nên tốc độ phản ứng tăng.

c) Ảnh hưởng của nhiệt độ.

Khi nhiệt độ tăng, tốc độ phản ứng tăng.

Giải thích: Khi nhiệt độ tăng dẫn đến hai hệ quả sau:

- Tốc độ chuyển động của các phần tử tăng, dẫn đến tần số va chạm giữa các chất phản ứng tăng.

- Tần số va chạm có hiệu quả giữa các chất phản ứng tăng nhanh. Đây là yếu tố chính làm cho tốc độ phản ứng tăng nhanh khi tăng nhiệt độ.

d) Ảnh hưởng của diện tích bề mặt.

Đối với phản ứng có chất rắn tham gia, khi diện tích bề mặt tăng, tốc độ phản ứng tăng.

Giải thích: chất rắn với kích thước hạt nhỏ có tổng diện tích bề mặt tiếp xúc với chất phản ứng lớn hơn so với chất rắn có kích thước hạt lớn hơn cùng khối lượng, nên có tốc độ phản ứng lớn hơn.

e) Ảnh hưởng của chất xúc tác.

Chất xúc tác làm tăng tốc độ phản ứng, nhưng không bị tiêu hao trong phản ứng.

Giải thích: người ta cho rằng sự hấp thụ các phana tử phản ứng trên bề mặt chất xúc tác làm tăng hoạt tính của chúng. Chất xúc tác làm yếu liên kiết giữa các nguyên tử của phân tử tham gia phản ứng làm biến đổi cơ chế phản ứng nên làm tăng tốc độ phản ứng.

20 tháng 2 2016

Hỏi đáp Hóa học

-Bạn ơi, mình nghĩ 0,9 phải là kg chứ đâu phải g

1 tháng 2 2015

a, Ta có:

Hai hàm sóng trực giao nhau khi  \(I=\int\psi_{1s}.\psi_{2s}d\psi=0\) \(\Leftrightarrow I=\iiint\psi_{1s}.\psi_{2s}dxdydz=0\)

Chuyển sang tọa độ cầu ta có:  \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.\sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)

\(\Rightarrow\)\(I=\frac{a^3_o}{4.\sqrt{2.\pi}}\int\limits^{\infty}_0\left(2-\frac{r}{a_o}\right).e^{-\frac{3.r}{2.a_o}}.r^2.\sin\theta dr\int\limits^{2\pi}_0d\varphi\int\limits^{\pi}_0d\theta\)

       \(=a^3_o.\sqrt{\frac{\pi}{2}}\)(.\(2.\int\limits^{\infty}_0r^2.e^{-\frac{3.r}{2.a_o}}dr-\frac{1}{a_o}.\int\limits^{\infty}_0r^3.e^{-\frac{3.r}{2.a_o}}dr\))

         \(=a_o.\sqrt{\frac{\pi}{2}}.\left(2.I_1-\frac{1}{a_o}.I_2\right)\)  

Tính \(I_1\):

Đặt \(r^2=u\)\(e^{-\frac{3r}{2a_o}}dr=dV\)

\(\Rightarrow\begin{cases}2.r.dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\)    \(\Rightarrow I_1=-r^2.\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}+\frac{4.a_o}{3}.\int\limits^{\infty}_0r.e^{-\frac{3r}{2a_o}}dr\)\(=0+\frac{4a_o}{3}.I_{11}\)

Tính \(I_{11}\):

Đặt r=u; \(e^{-\frac{3r}{2a_o}}dr=dV\)\(\Rightarrow\begin{cases}dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\)\(\Rightarrow I_{11}=0+\frac{2a_0}{3}.\int\limits^{\infty}_0e^{-\frac{3r}{2a_o}}dr=\frac{4a^2_o}{9}\)

\(\Rightarrow2.I_1=2.\frac{4a_o}{3}.\frac{4a_o^2}{9}=\frac{32a^3_o}{27}\)

Tính \(I_2\):

Đặt \(r^2=u;e^{-\frac{3r}{2a_o}}dr=dV\) \(\Rightarrow\)\(3r^2dr=du;-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\)

\(\Rightarrow I_2=0+2.a_o.\int\limits^{\infty}_0r^2.e^{-\frac{3r}{2a_o}}dr\)\(\Rightarrow\frac{1}{a_o}.I_2=2a_o.\frac{16a^3_o}{27}.\frac{1}{a_o}=\frac{32a^3_o}{27}\)

\(\Rightarrow I=a^3_o.\sqrt{\frac{\pi}{2}}.\left(\frac{32a^3_o}{27}-\frac{32a^3_o}{27}\right)=0\)

Vậy hai hàm sóng này trực giao với nhau.

b,

Xét hàm \(\Psi_{1s}\):

Hàm mật độ sác xuất là: \(D\left(r\right)=\Psi^2_{1s}=\frac{1}{\pi}.a^3_o.e^{-\frac{2r}{a_o}}\)

\(\Rightarrow D'\left(r\right)=-\frac{2.a_o^2}{\pi}.e^{-\frac{2r}{a_o}}=0\)

\(\Rightarrow\)Hàm đạt cực đại khi \(r\rightarrow o\) nên hàm sóng có dạng hình cầu.

Xét hàm \(\Psi_{2s}\):

Hàm mật độ sác xuất: \(D\left(r\right)=\Psi_{2s}^2=\frac{a^3_o}{32}.\left(2-\frac{r}{a_o}\right)^2.e^{-\frac{r}{a_0}}\)\(\Rightarrow D'\left(r\right)=\left(2-\frac{r}{a_o}\right).e^{-\frac{r}{a_o}}.\left(-4+\frac{r}{a_o}\right)=0\)

\(\Rightarrow r=2a_o\Rightarrow D\left(r\right)=0\)\(r=4a_o\Rightarrow D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)

Vậy hàm đạt cực đại khi \(r=4a_o\), tại \(D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)

 

                

 

hai hàm trực giao: I=\(\int\)\(\Psi\)*\(\Psi\)d\(\tau\)=0

Ta có: I=\(\int\limits^{ }_x\)\(\int\limits^{ }_y\)\(\int\limits^{ }_z\)\(\Psi\)*\(\Psi\)dxdydz=0

           =\(\int\limits^{ }_r\)\(\int\limits^{ }_{\theta}\)\(\int\limits^{ }_{\varphi}\)\(\Psi\)1s\(\Psi\)2sr2sin\(\theta\)drd\(\theta\)d\(\varphi\)

          =\(\int\limits^{\infty}_0\)\(\int\limits^{\pi}_0\)\(\int\limits^{2\pi}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2sin\(\theta\)drd\(\theta\)d\(\varphi\)

          =C.\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr.\(\int\limits^{\pi}_0\)sin\(\theta\)\(\int\limits^{2\pi}_0\)d\(\varphi\)

 với C=\(\frac{1}{4\sqrt{2\pi}}\)a0-3

 Xét tích phân: J=\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr

 =\(\int\limits^{\infty}_0\)(2r2\(\frac{r^3}{a_0}\)).e-3r/a0dr

 =\(\int\limits^{\infty}_0\)(2r2\(\frac{r^3}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a0

  =\(\frac{-2a_0}{3}\).((2r2-\(\frac{r^3}{a_0}\))e-3r/a0\(-\)\(\int\)(4r-\(\frac{3r^2}{a_0}\))e-3r/adr)

 =\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 - \(\int\)(4r-\(\frac{3r^2}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a)

 =\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a\(\int\)(4 - \(\frac{6r}{a_0}\))e-3r/a0dr))

 =\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0- \(\int\)(4 - \(\frac{6r}{a_0}\))\(\frac{-2a_0}{3}\).de-3r/a0))

 =\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\)e-3r/a0dr)))

=\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\).\(\frac{-2a_0}{3}\)de-3r/a0)))

=\(\frac{-2a_0}{3}\)((((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 - 4.e-3r/a0))))

=\(\frac{-2a_0}{3}\)e-3r/a0.\(\frac{-r^3}{a_0}\)
=2/3.e-3r/a0.r3
Thế cận tích phân 0 và \(\infty\) 
           J= 0 
suy ra I=0. 
Vậy 2 hàm số trực giao
29 tháng 3 2016

C

20 tháng 1 2015

a) Ta có:   Mật độ xác suất tìm thấy electron trong vùng không gian xung quanh hạt nhân nguyên tử:

    D(r) = R2(r) . r2

             = 416/729 . a0-5 . r2 . (2 - r/3a0)2 . e-2r/3a0 . r2

           = 416/729 . a0-5 . (4r- 4r5/3a+ r6/9a02) .  e-2r/3a0

      Khảo sát hàm số D(r) thuộc r

          Xét:  d D(r)/ dr = 416/729 . a0-5 . [(16r3 - 20r4/3a0 + 2r5/3a02) .  e-2r/3a0  -  (4r- 4r5/3a+ r6/9a02) . 2/3a0  e-2r/3a0 ]

                          = 416/729 . a0-5 . e-2r/3a . r3 . (16a03 - 28r/3a0 + 14r2/9a02 - 2r3/27a03)

                          = 832/19683 . a0-8 e-2r/3a . r3 . (-r+21r2.a- 126r.a02 +216a03)

                          = - 832/19683 . a0-8 e-2r/3a . r3 . (r - 6a0).(r - 3a0).(r - 12a0)

           d D(r)/ dr = 0. Suy ra r =0; r =3a; r = 6a0; r = 12a0

           Với r = 0 : D(r) =0

                  r =3a: D(r) = 416/9 .a-1 . e-2

                  r =6a: D(r) = 0

                  r =12a: D(r) = 425984/9.a-1 . e-8

b) Ai vẽ câu này rồi cho   up lên với, cám ơn mọi người trước nhé!  

21 tháng 1 2015

a)Mật độ xác suất có mặt electron tỷ lệ với |R3P|2.r2

D(r)=|R3P|2.r2  =D (r)=\(\frac{416}{729}\) .a0-5.(2r2- \(\frac{r^3}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)

   Lấy đạo hàm của D theo r để khảo sát mật độ xác suất :

    D' (r)= \(\frac{416}{729}\) .a0-5.2.(2r2-\(\frac{r^3}{3a_0}\)).(4r-\(\frac{r^2}{a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)+\(\frac{416}{729}\) .a0-5.(2r2-\(\frac{r^3}{3a_0}\))2.(-\(\frac{2}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\) 

           =\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\). (2r2-\(\frac{r^3}{3a_0}\)) .[(4r-\(\frac{r^2}{a_0}\)).a0 -\(\frac{1}{3}\). (2r2-\(\frac{r^3}{3a_0}\))]

            =\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\).r3.(2- \(\frac{r}{3a_0}\)).(\(\frac{r^2}{9a_0}-\frac{5r}{3}+4a_0\))

=>D’(r)=0   => r=0 ,r=3a0 ,r=6a0 ,r=12a0.

Với:r=0      =>D(r)=0

       r=3a0  =>D(r)=0

       r=6a0  =>D(r)=\(\frac{416}{9a_0.e^2}\)

       r=12a0=>D(r)=\(\frac{425984}{a_0.e^8}\)

b)

2 tháng 2 2015

Ta có:

Hàm \(\Psi\)được gọi là hàm chuẩn hóa nếu: \(\int\Psi.\Psi^{\circledast}d\tau=1hay\int\Psi^2d\tau=1\)

Hàm \(\Psi\)chưa chuẩn hóa là: \(\int\left|\Psi\right|^2d\tau=N\left(N\ne1\right)\)

Để có hàm chuẩn hóa, chia cả 2 vế cho N,ta có:

\(\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Rightarrow\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=1\)

Trong đó: \(\Psi=\frac{1}{\sqrt{N}}.\Psi\)là hàm chuẩn hóa; \(\frac{1}{\sqrt{N}}\)là thừa số chuẩn hóa

Ta có:

\(\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Leftrightarrow\frac{1}{N}.\iiint\left|\Psi\right|^2dxdydz=1\)

Chuyển sang tọa độ cầu, ta có: \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)với \(\begin{cases}0\le r\le\infty\\0\le\varphi\le2\pi\\0\le\theta\le\pi\end{cases}\)

\(\Rightarrow\frac{1}{N}.\iiint\left(r.\cos\varphi.sin\theta\right)^2.e^{-\frac{r}{a_o}}.r^2.sin\theta drd\varphi d\theta=1\)

\(\Leftrightarrow\frac{1}{N}.\int\limits^{\infty}_0r^4.e^{-\frac{r}{a_o}}dr.\int\limits^{2\pi}_0\cos^2\varphi d\varphi.\int\limits^{\pi}_0sin^3\theta d\theta=1\)

\(\Leftrightarrow\frac{1}{N}.\frac{4!}{\left(\frac{1}{a_o}\right)^5}.\int\limits^{2\pi}_0\frac{\cos\left(2\varphi\right)+1}{2}d\varphi\int\limits^{\pi}_0\frac{3.sin\theta-sin3\theta}{4}d\theta=1\)(do \(\int\limits^{\infty}_0x^n.e^{-a.x}dx=\frac{n!}{a^{n+1}}\))

\(\Leftrightarrow\frac{1}{N}.24.a^5_o.\frac{4}{3}.\pi=1\)

\(\Leftrightarrow\frac{1}{N}=\frac{1}{32.a^5_o.\pi}\)

\(\Rightarrow\)Thừa số chuẩn hóa là: \(\frac{1}{\sqrt{N}}=\sqrt{\frac{1}{32.a^5_o.\pi}}\); Hàm chuẩn hóa: \(\Psi=\frac{1}{\sqrt{N}}.\Psi=\sqrt{\frac{1}{32.a^5_o.\pi}}.x.e^{-\frac{r}{2a_o}}\)

1 tháng 2 2015

áp dụng dk chuẩn hóa hàm sóng. \(\int\psi\psi^{\cdot}d\tau=1.\)

ta có: \(\int N.x.e^{-\frac{r}{2a_0}}.N.x.e^{-\frac{r}{2a_0}}.d\tau=1=N^2.\int_0^{\infty}r^4e^{-\frac{r}{a_0}}dr.\int_0^{\pi}\sin^3\theta d\tau.\int^{2\pi}_0\cos^2\varphi d\varphi=N^2.I_1.I_2.I_3\)

Thấy tích phân I1 có dạng tích phân hàm gamma. \(\int^{+\infty}_0x^ne^{-ax}dx=\int^{+\infty}_0\frac{\left(\left(ax\right)^{n+1-1}e^{-ax}\right)d\left(ax\right)}{a^{n+1}}=\frac{\Gamma\left(n+1\right)!}{a^{n+1}}=\frac{n!}{a^{n+1}}.\)

.áp dụng cho I1 ta được I\(I1=4!.a_0^5=24a^5_0\). tính \(I2=\int_0^{\pi}\sin^3\theta d\theta=\int_0^{\pi}\left(\cos^2-1\right)d\left(\cos\theta\right)=\frac{4}{3}\). tính tp \(I3=\int_0^{2\pi}\cos^2\varphi d\varphi=\int_0^{2\pi}\frac{\left(1-\cos\left(2\varphi\right)\right)}{2}d\varphi=\pi\)

suy ra \(\frac{N^2.24a_0^5.\pi.4}{3}=1\). vậy N=\(N=\frac{1}{\sqrt{32\pi a_0^5}}\). hàm \(\psi\) sau khi chiuẩn hóa có dạng \(\psi=\frac{1}{\sqrt{\pi32.a_0^5}}x.e^{-\frac{r}{2a_0}}\)

13 tháng 7 2017

-Theo mk nghĩ là đáp án a

5 tháng 4 2016

Cùng điều kiện nhiệt độ về ấp suất nhiệt độ thì cùng tỉ lệ về số mol
m CO2 : m H2O = 44:9  n CO2 : n H2O = 1:0,5
 n O ( trong CO2) : n O ( trong H2O) = 2 : 0,5 = 4(I)

 

+)  nO2 pư = 10 mol = n O (trong CO2) + n O ( trong H2O) (II)
=>
n O (trong CO2) = 16 mol
n O ( trong H2O) = 4 mol
 n CO2 = 8 mol; n H2O = 4 mol
 nC : nH= 8:8
 A là C8H8