Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
- Hàm số y = cos 3x có tập xác định là D = R
- ∀ x ∈ D ⇒ - x ∈ D
- và f(-x) = cos 3(-x) = cos (-3x) = cos(3x) = f(x)
Vậy hàm số y = cos 3x là hàm số chẵn
b)
Ta có:
Hàm số \(y=tan\left(x+\dfrac{\pi}{5}\right)\) không là hàm số lẻ vì:
\(y=tan\left(x+\dfrac{\pi}{5}\right)\) có tập xác định là \(D=R\backslash\left\{\dfrac{3\pi}{10}+k\pi\right\}\).
Mà với mọi x ∈ D, ta không suy ra được -x ∈ D
Chẳng hạn:
Lấy \(x=-\dfrac{3\pi}{10}\in D\). Ta có \(-x=\dfrac{3\pi}{10}\notin D\).
Vậy hàm số \(y\left(x\right)\) có tập xác định không tự đối xứng nên \(y=tan\left(x+\dfrac{\pi}{5}\right)\) không là hàm số lẻ.
a) Sai , vì chẳng hạn trên khoảng \(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\) , hàm số y = sinx đồng biến nhưng hàm số y = cosx không nghịch biến .
b) Đúng , vì nếu trên khoảng J , hàm số y = sin2x đồng thời thì với x1 , x2 tùy ý thuộc J mà x1 < x2 , ta có sin2x1 < sin2x2 , từ đó
cos2x1 = 1 - sin2x1 > 1 - sin2x2 = cos2x2 , tức là hàm số y = cos2x nghịch biến trên J .
Hàm y=cotx là hàm lẻ do cot(-x)=-cotx
Hàm y=sinx là hàm lẻ do sin(-x)=-sinx
Hàm y=cosx là hàm chẵn do cos(-x)=cosx
Hàm y=tanx là hàm lẻ do tan(-x)=-tanx