K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

\(\left(x+2y\right)^5=C_5^0.x^5+C_5^1.x^4.2y+C_5^2.x^3.\left(2y\right)^2+C_5^3.x^2.\left(2y\right)^3+C_5^4.x.\left(2y\right)^4+C_5^5.\left(2y\right)^5\\ =x^5+10x^4y+40x^3y^2+80x^2y^3+80xy^2+32y^5\)

3 tháng 5 2023
HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     \(\begin{array}{l}{(x - 3)^4} = {x^4} + 4{x^3}.( - 3) + 6{x^2}.{( - 3)^2} + 4x.{( - 3)^3} + {( - 3)^4}\\ = {x^4} - 12{x^3} + 54{x^2} - 108x + 81\end{array}\)

b) \({(3x - 2y)^4} = 81{x^4} - 216{x^3}y + 216{x^2}{y^2} - 96x{y^3} + 16{y^4}\)

c)  

\(\begin{array}{l}{(x + 5)^4} + {(x - 5)^4} = {x^4} + 20{x^3} + 150{x^2} + 500x + 625\\ + {x^4} - 20{x^3} + 150{x^2} - 500x + 625\\ = 2{x^4} + 300{x^2} + 1250\end{array}\)

d)    \({(x - 2y)^5} = {x^5} - 10{x^4}y + 40{x^3}{y^2} - 80{x^2}{y^3} + 80x{y^4} - 32{y^5}\)

29 tháng 3 2023

bạn có thể viết rõ được không ạ, mình không đọc được 

 

5 tháng 3 2023

loading...  

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \({\left( {x - 2} \right)^4}\)

\(\begin{array}{l} = {x^4} + 4{x^3}.\left( { - 2} \right) + 6{x^2}.{\left( { - 2} \right)^2} + 4x{\left( { - 2} \right)^3} + {\left( { - 2} \right)^4}\\ = {x^4} - 8{x^3} + 24{x^2} - 32x + 16\end{array}\)

b) \({\left( {x + 2y} \right)^5}\)

\(\begin{array}{l} = {x^5} + 5.{x^4}.\left( {2y} \right) + 10.{x^3}.{\left( {2y} \right)^2} + 10.{x^2}.{\left( {2y} \right)^3} + 5.x.{\left( {2y} \right)^4} + 1.{\left( {2y} \right)^5}\\ = {x^5} + 10{x^4}y + 40{x^3}{y^3} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}\end{array}\)

31 tháng 3 2023

x^5 + 5.x^4.2y + 10.x^3.4y^2 + 10.x^2.8y^3 + 5.x.16y^4 + 32y^5

= x^5 + 10.x^4.y + 40.x^3.y^2 + 80.x^2.y^3 + 80.x.y^4 +32.y^5

a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)

Số hạng ko chứa x tương ứng với 10-2k=0

=>k=5

=>SH đó là 8064

b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)

Số hạng ko chứa x tương ứng với 6-3k=0

=>k=2

=>Số hạng đó là 60

c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)

\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)

SH chứa x^10 tương ứng với 15-5k=10

=>k=1

=>Hệ số là -810

23 tháng 4 2023

1D; 2B; 3D

14 tháng 4 2023

\(\left(x+5\right)^4+\left(x-5\right)^4=\left[\left(x+5\right)^4+2.\left(x+5\right)^2.\left(x-5\right)+\left(x-5\right)^4\right]-2.\left(x+5\right)^2\left(x-5\right)^2\)

\(=\left[\left(x+5\right)^2-\left(x-5\right)^2\right]^2-\left[\sqrt{2}\left(x+5\right)\left(x-5\right)\right]^2\)

\(=\left[\left(x+5\right)^2+\left(x-5\right)^2+\sqrt{2}\left(x+5\right)\left(x-5\right)\right]^2\)

Sau đó bạn áp dụng hằng đẳng thức thứ nhất và thứ 2  ( bình phương 1 tổng và bình phương 1 hiệu tính ra nhé 

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) \({\left( {x + 1} \right)^5} = {x^5} + 5.{x^4}.1 + 10.{x^3}{.1^2} + 10.{x^2}{.1^3} + 5.{x^1}{.1^4} +{1^5} = {x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 5x + 1\)

b) \(\begin{array}{l}{\left( {x - 3y} \right)^5} = {\left[ {x + \left( { - 3y} \right)} \right]^5} = {x^5} + 5{x^4}{\left( { - 3y} \right)^1} + 10{x^3}{\left( { - 3y} \right)^2} + 10{x^2}{\left( { - 3y} \right)^3} + 5{x^1}{\left( { - 3y} \right)^4} + {\left( { - 3y} \right)^5}\\ = {x^5} - 15{x^4}y + 90{x^3}{y^2} - 270{x^2}{y^3} + 405x{y^4} - 243{y^5}\end{array}\)