Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nhầm tí.
\(=\left(2x-3-2x-5\right)^2=\left(-8\right)^2=64\) nha
\(=x^4-8x^3+24x^2-32x+16+x^4+8x^3+24x^2+32x+16=2x^4+48x^2+32=2\left(x^4+12x^2+16\right)=2\left[\left(x^2+6\right)^2-20\right]\)
\(1.\) Với mọi \(x+y+z=0\) \(\left(1\right)\), ta có: \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\) \(\left(2\right)\)
Thật vậy, từ \(\left(1\right)\) \(\Rightarrow\) \(x=-\left(y+z\right)\)
\(\Leftrightarrow\) \(x^2=\left[-\left(y+z\right)\right]^2\)
\(\Leftrightarrow\) \(x^2=y^2+2yz+z^2\)
\(\Leftrightarrow\) \(x^2-y^2-z^2=2yz\)
\(\Leftrightarrow\) \(\left(x^2-y^2-z^2\right)^2=4y^2z^2\)
\(\Leftrightarrow\) \(x^4+y^4+z^4-2x^2y^2+2y^2z^2-2x^2z^2=4y^2z^2\)
\(\Leftrightarrow\) \(x^4+y^4+z^4=4y^2z^2+2x^2y^2-2y^2z^2+2x^2z^2\)
\(\Leftrightarrow\) \(x^4+y^4+z^4=2\left(x^2y^2+y^2z^2+x^2z^2\right)\) \(\left(3\right)\)
Cộng \(x^4+y^4+z^4\) vào hai vế của đẳng thức \(\left(3\right)\), ta được đẳng thức \(\left(2\right)\)
Vậy, đẳng thức \(\left(2\right)\) đã được chứng minh với mọi \(x+y+z=0\)
Khi đó, \(M=2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2=1\)
Do đó, giá trị \(M=1\)
-Charlotte-
Nhờ mọi người ghi giúp mình cách giải nhé! Cảm ơn mọi người nhiều.
A= (2x-1)2-(2x+3)(x-2)-2(x+2)(x+5)
A= 4x2-4x+1-(2x2-x-6)-2(x2+7x+10)
A=4x2-4x+1-2x2+x+6-2x2-14x-20
A= -17x-13
Thay x= -3, ta có:
A= -17.3-13=-51-13=-64
\(=x^5\text{ }+5x^4+10x^3+10x^2+5x+1+x^5\text{ }-5x^4+10x^3-10x^2+5x-1=2x^5+20x^3+10x=2\left(x^5+10x^3+5\right)\)