K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

(2/3x+3y).(3y-2/3x)

= ( 3y)^2  - ( 2/3 x )^2

=  9y^2  - 4/9 x^2

9 tháng 9 2021

`(2/3 x+3y)(3y-2/3x)`

`=(3y +2/3x)(3y-2/3x)`

`= (3y)^2 - (2/3x)^2`

`= 9y^2 - 4/9 x^2`

Vận dụng : `A^2-B^2=(A-B)(A+B)`

5:

a: (2x-5)(2x+5)=4x^2-25

b: (3x-5y)(3x+5y)=9x^2-25y^2

c: (3x+7y)(3x-7y)=9x^2-49y^2

d: (2x-1)(2x+1)=4x^2-1

4:

a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2

b: 8(7^2+1)(7^4+1)(7^8+1)

=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)

=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)

=1/6(7^16-1)<7^16-1

28 tháng 7 2023

5:

a: (2x-5)(2x+5)=4x^2-25

b: (3x-5y)(3x+5y)=9x^2-25y^2

c: (3x+7y)(3x-7y)=9x^2-49y^2

d: (2x-1)(2x+1)=4x^2-1

mik chỉ biết bài 5 thôi !

a: \(\left(3x-2\right)^2=9x^2-12x+4\)

c: \(9x^2-225=9\left(x^2-25\right)=9\left(x-5\right)\left(x+5\right)\)

a: \(\left(3x-2\right)^2=9x^2-12x+4\)

c: \(9x^2-225=\left(3x-15\right)\left(3x+15\right)\)

d: \(\left(2x-3y\right)^3=8x^3-36x^2y+54xy^2-27y^3\)

2 tháng 10 2021

a) \(\left(3x-2\right)^2=\left(3x\right)^2-2.3x.2+2^2=9x^2-12x+4\)

b) \(\left(\dfrac{x}{3}+y^3\right)^2=\left(\dfrac{x}{3}\right)^2+2\dfrac{x}{3}y^3+\left(y^3\right)^2=\dfrac{x^2}{9}+\dfrac{2}{3}xy^3+y^6\)

c) \(9x^2-225=\left(3x\right)^2-\left(15\right)^2=\left(3x-15\right)\left(3x+15\right)\)

2 tháng 10 2021

d) \(\left(2x-3y\right)^3=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^2-\left(3y\right)^3=8x^3-3.4x^2.3y+6x.9y^2-27y^3=8x^3-36x^2y+54xy^2-27y^3\)

e) \(\left(2x^2+\dfrac{3}{2}\right)^3=\left(2x^2\right)^3+3\left(2x^2\right)^2\dfrac{3}{2}+3.2x^2\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3=8x^6+3.4x^4.\dfrac{3}{2}+6x^2.\dfrac{9}{4}+\dfrac{27}{8}=8x^6+18x^4+\dfrac{27}{2}x^2+\dfrac{27}{8}\)

f) \(\left(-2xy^2+\dfrac{1}{2}x^3y\right)^3=\left(-2xy^2\right)+3\left(-2xy^2\right)^2\dfrac{1}{2}x^3y+3\left(-2xy^2\right)\left(\dfrac{1}{2}x^3y\right)^2+\left(\dfrac{1}{2}x^3y\right)^3=-8x^3y^6+3.4x^2y^4.\dfrac{1}{2}x^3y-6xy^2.\dfrac{1}{4}x^6y^2+\dfrac{1}{8}x^9y^3=-8x^3y^6+6x^5y^5-\dfrac{3}{2}x^7y^4+\dfrac{1}{8}x^9y^3\)

1) \(\left(x+1\right)^2=x^2+2x+1\)

2) \(\left(2x+1\right)^2=4x^2+4x+1\)

3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)

4) \(\left(2x+3\right)^2=4x^2+12x+9\)

5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)

6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)

7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)

8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)

9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)

10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)

28 tháng 9 2021

\(a,=x^3+3x^2+3x+1\\ b,=8x^3+36x^2+54x+27\\ c,=x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\\ d,=x^6-6x^4+12x^2-8\\ e,=8x^3-36x^2y+54xy^2-27y^3\)

20 tháng 6 2017

a) \(\left(2x^3-y^2\right)^3\)

\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)

\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)

\(=8x^9-12x^6y^2+6x^3y^4-y^6\)

b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)

\(=\left(x+2y\right)^2-z^2\)

\(=x^2+4xy+4y^2-z^2\)

d) \(\left(2x^3y-0,5x^2\right)^3\)

\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)

\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)

e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)

\(=\left(x^2-3\right)\left(4x^2+9\right)\)

\(=4x^4+9x^2-12x^2-27\)

\(=4x^4-3x^2-27\)

f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=\left(2x\right)^3-1^3\)

\(=8x^3-1\)

20 tháng 6 2017

\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)

\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)

8 tháng 9 2020

a, (x+y)2 = x2 + 2xy + y2
b, ( x-4y)2= x2 -8xy2 + 16y2
c, \(\left(3x+\frac{1}{3}\right)^2=9x^2+2xy+\frac{1}{9}\)
d,\(4x^2-81=\left(2x-9\right)\left(2x+9\right)\)
e,\(\left(xy+5\right)^2=x^2y^2+10xy+25\)
f,\(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
g,\(1-9y^2=\left(1-3y\right)\left(1+3y\right)\)
h,\(\left(m-\frac{2}{3}n\right)^2=m^2-\frac{4}{3}mn+\frac{4}{9}n^2\)