K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)

d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)

e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)

f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)

22 tháng 8 2020

a, \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b, \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

e, \(\left(x-y\right)^2\left(x+y\right)^2=x^4-2x^2y^2+y^4\)

26 tháng 8 2017

a) \(\left(2x-3y\right)^2=4x^2-12xy+9y^2\)

b) \(\left(5p-q\right)^2=25p^2-10pq+q^2\)

c) \(\left(-a-b\right)^2=-a^2-2ab-b^2\)

d) \(\left(1+3s\right)^2=1+6s+9s^2\)

e) \(\left(a^2b+2b\right)^2=a^4b^2+4a^2b^2+4b^2\)

f) \(\left(3u-v\right)^3=27u^3-27u^2v+9uv^2-v^3\)

26 tháng 8 2017

a,\(\left(2x-3y\right)=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2\)

=\(4x^2-12xy+6y^2\)

b,\(\left(5p-q\right)^2=\left(5p\right)^2-2.5p.q+q^2\)

=\(25p^2-10pq+q^2\)

c,(-a-b)\(^2=\left(-a\right)^2-2.\left(-a\right).b+b^2\)

=\(a^2+2ab+b^2\)

d,\(\left(1+3s\right)^2=1+6s+9s^2\)

e,(a\(^2b+2b)^2=(a^2b)^2+2.a^2b.2b^2+\left(2b\right)^2\)

=\(a^4b^2+4a^2b^2+4b^2\)

f,\(\left(3u-v\right)^3=27u^3-27u^2v+9uv^2-v^3\)

17 tháng 7 2019

\(a,xy+1-x-y\)

\(=\left(xy-y\right)+\left(1-x\right)\)

\(=y\left(x-1\right)- \left(x-1\right)\)

\(=\left(x-1\right)\left(y-1\right)\)

\(b,ax+ay-3x-3y\)

\(=a\left(x+y\right)-3\left(x+y\right)\)

\(=\left(x+y\right)\left(a-3\right)\)

\(c,x^3-2x^2+2x-4\)

\(=x^2\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x^2+2\right)\left(x-2\right)\)

\(d,x^2+ab+ax+bx\)

\(=\left(x^2+ax\right)+\left(ab+bx\right)\)

\(=x\left(a+x\right)+b\left(a+x\right)\)

\(=\left(a+x\right)\left(b+x\right)\)

\(e,16-x^2+2xy-y^2\)

\(=4^2-\left(x^2-2xy+y^2\right)\)

\(=4^2-\left(x-y\right)^2\)

\(=\left(4-x+y\right)\left(4+x-y\right)\)

17 tháng 7 2019

\(f,ax^2+ax-bx^2-bx-a+b\)

\(=\left(ax^2-bx^2\right)+\left(ax-bx\right)-\left(a-b\right)\)

\(=x^2\left(a-b\right)+x\left(a-b\right)-\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2+x-1\right)\)

17 tháng 7 2019

Hỏi đáp Toán

17 tháng 7 2019

a) \(xy+1-x-y\)

\(=x\left(y-1\right)-\left(y-1\right)\)

\(=\left(y-1\right)\left(x-1\right)\)

b) \(ax+ay-3x-3y\)

\(=a\left(x+y\right)-3\left(x+y\right)\)

\(=\left(x+y\right)\left(a-3\right)\)

c) \(x^3-2x^2+2x-4\)

\(=x^2\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2\right)\)

d) \(x^2+ab+ax+bx\)

\(=x\left(b+x\right)+a\left(b+x\right)\)

\(=\left(b+x\right)\left(a+x\right)\)

e) \(16-x^2+2xy-y^2\)

\(=16-\left(x^2-2xy+y^2\right)\)

\(=4^2-\left(x-y\right)^2\)

\(=\left(4-x+y\right)\left(4+x-y\right)\)

f) \(ax^2+ax-bx^2-bx-a+b\)

\(=\left(ax^2+ax-a\right)-\left(bx^2+bx-b\right)\)

\(=a\left(x^2+x-1\right)-b\left(x^2+x-1\right)\)

\(=\left(x^2+x-1\right)\left(a-b\right)\)

2 tháng 9 2020

Bài 1 :

a) \(\left(x-4\right)\left(x+4\right)=x^2-16\)

b) \(\left(x-5\right)\left(x+5\right)=x^2-25\)

Bài 2 :

a) \(x^2-2x+1=\left(x-1\right)^2\)

b) \(x^2+2x+1=\left(x+1\right)^2\)

c) \(x^2-6x+9=\left(x-3\right)^2\)

2 tháng 9 2020

1) a. (x - 4)(x + 4) = x2 - 4x + 4x - 16 = x2 - 16

b. (x - 5)(x + 5) = x2 - 5x + 5x - 25 = x2 - 25

2. x2 - 2x + 1 = x2 - x - x + 1 = x(x - 1) - (x - 1) = (x - 1)2

(x2 + 2x + 1) = x2 + x + x + 1 = x(x + 1) + (x + 1) = (x + 1)2

x2 - 6x + 9 = x2 - 3x - 3x + 9 = x(x - 3) -3(x - 3) = (x - 3)2 

2 tháng 9 2020

B1: 

a) \(\left(x-4\right)\left(x+4\right)=x^2-16\)

b) \(\left(x-5\right)\left(x+5\right)=x^2-25\)

B2:

a) \(x^2-2x+1=\left(x-1\right)^2\)

b) \(x^2+2x+1=\left(x+1\right)^2\)

c) \(x^2-6x+9=\left(x-3\right)^2\)

2 tháng 9 2020

Bài 1 :

a) \(\left(x-4\right)\left(x+4\right)=x^2-4x+4-16=x^2-16\)

b) \(\left(x-5\right)\left(x+5\right)=x^2-5x+5x-25=x^2-25\)

Bài 2 :

a) \(x^2+2x+1=x^2-x-x+1\)

\(=x.\left(x-1\right)-\left(x+1\right)=\left(x-1\right)^2\)

b) \(x^2+2x+1=x^2+x+x+1\)

\(=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)^2\)

c) \(x^2-6x+9=x^2-3x-3x+9\)

\(=x.\left(x-3\right)-3.\left(x-3\right)=\left(x-3\right)^2\)

a) Ta có: \(\left(3x-1\right)^2-16\)

\(=\left(3x-1-4\right)\left(3x-1+4\right)\)

\(=\left(3x-5\right)\left(3x+3\right)\)

\(=3\left(x+1\right)\left(3x-5\right)\)

b) Ta có: \(\left(5x-4\right)^2-49x^2\)

\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)

\(=\left(-2x-4\right)\left(12x-4\right)\)

\(=-2\left(x+2\right)\cdot4\cdot\left(3x-1\right)\)

\(=-8\left(x+2\right)\left(3x-1\right)\)

c) Ta có: \(\left(2x+5\right)^2-\left(x-9\right)^2\)

\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)

\(=\left(x+14\right)\left(3x-4\right)\)

d) Ta có: \(\left(3x+1\right)^2-4\left(x-2\right)^2\)

\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)

\(=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\)

\(=\left(x+5\right)\left(5x-3\right)\)

e) Ta có: \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)

\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)

\(=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\)

\(=\left(4x+7\right)\left(8x+11\right)\)

f) Ta có: \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)

\(=-\left(b^2-2bc+c^2-a^2\right)\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=-\left[\left(b-c\right)^2-a^2\right]\cdot\left[\left(b+c\right)^2-a^2\right]\)

\(=-\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)

g) Ta có: \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)

\(=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\)

\(=\left[a\left(x-y\right)+b\left(y-x\right)\right]\left[a\left(x+y\right)+b\left(x+y\right)\right]\)

\(=\left[a\left(x-y\right)-b\left(x-y\right)\right]\left(x+y\right)\left(a+b\right)\)

\(=\left(x-y\right)\left(a-b\right)\left(x+y\right)\left(a+b\right)\)

h) Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)

\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)

\(=\left[\left(a^2+2ab+b^2\right)-1\right]\left[\left(a^2-2ab+b^2\right)-9\right]\)

\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)

i) Ta có: \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)

\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)

\(=\left(-6x-18\right)\left(8x^2-18\right)\)

\(=-6\left(x+3\right)\cdot2\left(x^2-9\right)\)

\(=-12\left(x+3\right)^2\cdot\left(x-3\right)\)

k) Ta có: \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

l) Ta có: \(-4x^2+12xy-9y^2+25\)

\(=-\left(4x^2-12xy+9y^2-25\right)\)

\(=-\left[\left(2x-3y\right)^2-5^2\right]\)

\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)

m) Ta có: \(x^2-2xy+y^2-4m^2+4mn-n^2\)

\(=\left(x-y\right)^2-\left(4m^2-4mn+n^2\right)\)

\(=\left(x-y\right)^2-\left(2m-n\right)^2\)

\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)