![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x0y và y0z là hai góc kề bù , ot là pg x0y ; 0t' là p/g của y0z
Ta có
y0t = 1/2 x0y ( ot là p/g) (1)
y0t' = 1/2 y0x ( 0t' là p/g) (2)
x0y + y0z = 180 độ ( kề bù)
Từ (1) và (2) => y0t + yot' = 1/2 ( xoy+ y0z) = 1/2 .180 = 9 0 độ
=> t0t' = 90 đọ
hay 0t vuông góc với 0t' => ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
B O C A N M
Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC
Chứng minh góc MON = 90 độ
Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB
Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC
Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC
Suy ra : OB nằm giữa hai tia OM và ON nên :
góc MON = góc MOB + góc BON
= 1/2 * ( góc AOB + góc BOC )
= 1/2 * 180 độ = 90 độ
Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC Chứng minh góc MON = 90 độ Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC Suy ra : OB nằm giữa hai tia OM và ON nên : góc MON = góc MOB + góc BON = 1/2 * ( góc AOB + góc BOC ) = 1/2 * 180 độ = 90 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
Cái này trong sách lớp 7 có chứng minh rồi nha bạn! Hình như là bài định lý thì phải
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
A B D E F C
Như hình vẽ trên: DE là pg góc ADB và DF là pg góc ADC
=>ADE = 1/2 (ADB) và ADF = 1/2(ADC)
=>ADE + ADF = EDF = 1/2(ADB + ADC) = 1/2*180 = 90
=>dpcm
Giải:
O x' x y t m 0 t' GT xOy và x'Oy kề bù Ot là tia phân giác của góc xOy Ot' là tia phân giác của góc x'Oy KL Ot vuông góc với Ot'
Đặt \(\widehat{xOy}=m^0(0< m^0< 180^0)\)
Hai góc xOy và yOx' là hai góc kề bù nên \(\widehat{xOy}+\widehat{yOx'}=180^0\)do đó \(\widehat{x'Oy}=180^0-\widehat{xOy}=180^0-m^0\)
Theo giả thiết Ot và Ot' lần lượt là tia phân giác của góc xOy và x'Oy nên \(\widehat{tOy}=\frac{1}{2}\widehat{xOy}=\frac{1}{2}m^0\)và \(\widehat{t'Oy}=\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\left[180^0-m^0\right]\). Tia Oy nằm giữa hai tia Ot và Ot', do đó \(\widehat{tOt}=\widehat{tOy}+\widehat{yOt'}=\frac{1}{2}m^0+\frac{1}{2}\left[180^0-m^0\right]=90^0\)
Vậy \(Ot\perp Ot'\)
hai goc ke nhau la 2 goc nam canh nhau.co the ma hong bit ha?
hai góc kề nhau là 2 góc có 1 cạnh chung