K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

\(=216+x^3\)

15 tháng 11 2021

\(\left(36-6x+x^2\right)\left(6+x\right)\)

\(216+36x-36x-6x^2+6x^2+x^3\)

\(x^3+216\)

29 tháng 11 2021

1. = \(\dfrac{x+y}{x-y}\)
2. = \(\dfrac{x}{x+3}\)

18 tháng 9 2016

x^3+3x^2+3x+1-x^3+4x^2-4x-1

=7x^2-x

18 tháng 9 2016

(x+1)^3-x(x-2)^2-1

=x^3+1-x^3+4x-1

=4xvui

`@` `\text {Ans}`

`\downarrow`

\((x+y)(x-y)+(xy^4-x^3y^2) \div (xy^2) \)

`= x(x-y) + y(x-y) + xy^4 \div xy^2 - x^3y^2 \div xy^2`

`= x^2 - xy + xy - y^2 + y^2 - x^2`

`= (x^2 - x^2) + (-xy + xy) + (-y^2 + y^2)`

`= 0`

a,hđt số 3 = \(\left(a^2+2a\right)^2-9\) 

b,hđt số 3=\(\left[x-\left(y-6\right)\right]\left[x+\left(y-6\right)\right]\)(đổi dấu làm ngoặc khi trước nó là dấu trừ)=\(x^2-\left(y-6\right)^2\)

a) \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2+3.\left(-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

b) \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=\left[x-\left(y-6\right)\right]\left[x+\left(y-6\right)\right]\)

\(=x^2-\left(y-6\right)^2\)

 

24 tháng 12 2021

a) điều kiện xác định: x≠3 và x≠2

b) \(\dfrac{x^2-4}{\left(x-3\right)\left(x-2\right)}\)=\(\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)}\)=\(\dfrac{x+2}{x-3}\)

Tại x=13 ta có \(\dfrac{13+2}{13-3}\)=\(\dfrac{3}{2}\)

 

25 tháng 8 2021

Toán lớp 8 ạ chưa học đlí bơ zu ạ

15 tháng 7 2016

tr 10h à còn sớm

P=x2 - 2x + 5

=x2-2x+1+4

=(x-1)2+4

Ta thấy:\(\left(x-1\right)^2+4\ge0+4=4\)

Dấu = khi x=1

Vậy Pmin=4 <=>x=1

Q= 2x2 -6x 

\(=2x^2-6x+\frac{9}{2}-\frac{9}{2}\)

\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)

\(=2\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)-\frac{9}{2}\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Ta thấy:\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2}=-\frac{9}{2}\)

Dấu = khi x=3/2

Vậy Qmin=-9/2 <=>x=3/2

15 tháng 7 2016

P = x2 - 2x + 5 = x(x - 2) + 5 nhỏ nhất khi x(x - 2) nhỏ nhất .

Xét x(x - 2) < 0 (để nhỏ nhất) thì x và x - 2 khác dấu mà x > x - 2 nên x > 0 > x - 2 => 2 > x > 0 => x = 1 => x(x - 2) = -1

Vậy P min = -1 + 5 = 4

Q = 2x2 - 6x = 2x(x - 3) nhỏ nhất khi x(x - 3) nhỏ nhất

Xét x(x - 3) < 0 (để nhỏ nhất) thì x và x - 3 khác dấu mà x > x - 3 nên x > 0 > x - 3 => 3 > x > 0 => x = 1;2

Ta thấy x(x - 3) = -2 tại x = 1 và x = 2 nên [x(x - 3)]min = -2 => Qmin = -2.2 = -4

6 tháng 11 2021

\(\left(x+2\right)^3-x.\left(x+2\right).\left(x-2\right)+6x^2\)

\(=x^3+3x^2.2+3x.2^2+2^3-x.\left(x^2-2^2\right)+6x^2\)

\(=x^3+6x^2+12x+8-\left(x^2-4\right)+6x^2\)

\(=x^3+6x^2+12x+8-x^3+4x+6x^2\)

\(=\left(x^3-x^3\right)+\left(6x^2+6x^2\right)+\left(12x+4x\right)+8\)

\(=12x^2+16x+8\)

30 tháng 8 2021

1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)

\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)

2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)

\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)

4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) 

\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

30 tháng 8 2021

3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)

\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)

\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)