![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a-3}{2a-1}+\frac{2a+1}{a+3}=\frac{\left(a-3\right)\left(a+3\right)+\left(2a-1\right)\left(2a+1\right)}{\left(2a-1\right)\left(a+3\right)}\)
\(=\frac{a^2-9+4a^2-1}{\left(2a-1\right)\left(a+3\right)}\)
vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\dfrac{2x}{a^2-a+1}+\dfrac{-4x}{2a^2-2a+2a^2}+\dfrac{2ax}{1+a^3}< \dfrac{1}{2a+2}-\dfrac{1}{2a^2-2a+2}+\dfrac{a}{1+a^3}\)
\(\Leftrightarrow\left(\dfrac{2}{a^2-a+1}-\dfrac{4}{2a^2-2a+2}+\dfrac{2a}{1+a^3}\right).x< \left(\dfrac{1}{2a+2}-\dfrac{1}{2a^2-2a+2}+\dfrac{a}{1+a^3}\right)\)
\(\Leftrightarrow\left(\dfrac{2a}{1+a^3}\right)x< \dfrac{\left(a^2-a+1\right)-\left(a+1\right)+2a}{2.\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{a^2}{1+a^3}\)
\(\Leftrightarrow\left(\dfrac{2a}{1+a^3}\right)x< \dfrac{a^2}{2.\left(1+a^3\right)}\)
\(a=0\Rightarrow vo...N_o\)
\(\left\{{}\begin{matrix}\dfrac{2a}{a^3+1}>0\Leftrightarrow\left[{}\begin{matrix}a< -1\\a>0\end{matrix}\right.\\x< \dfrac{a^2}{2\left(a^3+1\right)}:\dfrac{2a}{\left(a^3+1\right)}=\dfrac{a}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2a}{a^3+1}< 0\Rightarrow-1< a< 0\\x>\dfrac{a}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{4a^2-4a+1-4a^2-2a+6a+3}{\left(2a-1\right)\left(2a+1\right)}\)
\(=\dfrac{4}{\left(2a-1\right)\left(2a+1\right)}\)
b: \(=\dfrac{x-1-x-1+2x^2}{\left(x-1\right)\left(x+1\right)}=2\)
d: \(=\dfrac{x-5+6x}{x\left(x+3\right)}=\dfrac{7x-5}{x\left(x+3\right)}\)
e: \(=\dfrac{x^2-4+3}{x-2}=\dfrac{x^2-1}{x-2}\)
i: \(=\dfrac{x}{x\left(x-4\right)}-\dfrac{3}{5x}=\dfrac{1}{x-4}-\dfrac{3}{5x}\)
\(=\dfrac{5x-3x+12}{5x\left(x-4\right)}=\dfrac{2x+12}{5x\left(x-4\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo AM-GM ta có:
\(\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\a^2+b^2\ge2\sqrt{a^2b^2}=2ab\end{matrix}\right.\)
\(\Rightarrow a^2+2b^2+1\ge2ab+2b\Rightarrow a^2+2b^2+3\ge2ab+2b+2\)
\(=2\left(ab+b+1\right)\Rightarrow\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2\left(ab+b+1\right)}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\dfrac{1}{b^2+2c^2+3}\le\dfrac{1}{2\left(bc+c+1\right)};\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2\left(ca+a+1\right)}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{ab}{ab+b+1}+\dfrac{b}{ab+b+1}+\dfrac{1}{ab+b+1}\right)\left(abc=1\right)\)
\(=\dfrac{1}{2}\left(\dfrac{ab+b+1}{ab+b+1}\right)=\dfrac{1}{2}=VP\)
![](https://rs.olm.vn/images/avt/0.png?1311)
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)
![](https://rs.olm.vn/images/avt/0.png?1311)
1: \(\Leftrightarrow\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=3+x^2-x-2\)
\(\Leftrightarrow x^2-x+1=x^2-4+3x+3=x^2+3x-1\)
=>-4x=-2
hay x=1/2
2: \(\Leftrightarrow\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x^2+23x+61=2x^2+2x+11\)
=>21x=-50
hay x=-50/21
3: \(\Leftrightarrow6\left(x-8\right)+\left(x+2\right)\left(x-5\right)=-18-\left(x-5\right)\left(x-8\right)\)
\(\Leftrightarrow6x-48+x^2-3x-10+18+x^2-13x+40=0\)
\(\Leftrightarrow2x^2-10x=0\)
=>2x(x-5)=0
=>x=0(nhận) hoặc x=5(loại)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\dfrac{2a^3+a^2-a}{a^3-1}-2+\dfrac{1}{1-a}\right):\left(1:\dfrac{2a-1}{a-a^2}\right)\)
\(=\left(\dfrac{2a^3+a^2-a-2a^3+2-a^2-a-1}{\left(a-1\right)\left(a^2+a+1\right)}\right):\left(\dfrac{a\left(1-a\right)}{2a-1}\right)\)
\(=\dfrac{-2a+1}{\left(a-1\right)\left(a^2+a+1\right)}.\dfrac{2a-1}{a\left(1-a\right)}\)
\(=\dfrac{6a-3}{\left(a-1\right)^2\left(a^2+a+1\right)}\)
---
Thấy sai sai :vv