Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) x2 - 5 > 4
<=> x2 - 9 > 0
<=> ( x - 3)( x + 3) > 0
x x-3 x+3 -3 3 0 0 - - + - + + (x-3)(x+3) + 0 - 0 + Vậy , để : x2 - 9 > 0 thì : x < - 3 hoặc x > 3
b) tương tự nhé
2. \(\dfrac{x+6}{5}-\dfrac{x-2}{3}\) ≥ 2
<=> \(\dfrac{3\left(x+6\right)-5\left(x-2\right)}{15}\) ≥ \(\dfrac{30}{15}\)
<=> 3x + 18 - 5x + 10 ≥ 30
<=> 28 - 2x ≥ 30
<=> 2x ≤ -2
<=> x ≤ -1
KL....
3. ( x + 3 )( 1 - x) ≤ 0
Lập bảng xét dấu :
x x+3 1-x (x+3)(1-x) -3 1 0 0 0 0 - + + + + - - + -
Nhìn bảng xét dấu ta thấy : x ≤ - 3 hoặc : x ≥ 1 ( vô lý )
Vậy, BPT vô nghiệm
a, Vì \(2+\frac{3-2x}{5}\)không nhỏ hơn \(\frac{x+3}{4}-x\)
\(\Rightarrow2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)
Giải phương trình :
\(2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)
\(\Rightarrow\frac{40}{20}+\frac{4\left(3-2x\right)}{20}\ge\frac{5\left(x-3\right)}{20}-\frac{20x}{20}\)
\(\Rightarrow40+12-8x\ge5x-15-20x\)
\(\Rightarrow7x=67\)
\(\Rightarrow x\ge\frac{67}{7}\)
b, \(\frac{2x+1}{6}-\frac{x-2}{9}>-3\)
\(\Rightarrow\frac{3\left(2x+1\right)}{18}-\frac{2\left(x-2\right)}{18}>\frac{-54}{18}\)
\(\Rightarrow6x+3-2x+4>-54\)
\(\Rightarrow4x>-61\)
\(\Rightarrow x>\frac{-61}{4}\)\(\left(1\right)\)
Và : \(x-\frac{x-3}{4}\ge3-\frac{x-3}{12}\)
\(\frac{12x}{12}-\frac{3\left(x-3\right)}{12}\ge\frac{36}{12}-\frac{x-3}{12}\)
\(\Rightarrow12x-3x+9\ge36-x+3\)
\(\Rightarrow10x\ge30\)
\(\Rightarrow x\ge3\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x>\frac{-61}{4}\\x\ge3\end{cases}\Rightarrow x>3}\)
Vậy với giá trị x > 3 thì x là nghiệm chung của cả 2 bất phương trình
a) B xác định\(\Leftrightarrow\hept{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}}\Rightarrow x\ne\pm1\)
b) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Mà x khác 1 nên x = 0
\(B=\frac{x-1}{x+1}-\frac{x+1}{x-1}-\frac{4}{1-x^2}\)
\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}+\frac{4}{x^2-1}\)
\(=\frac{x^2-2x+1-x^2-2x-1}{\left(x+1\right)\left(x-1\right)}+\frac{4}{x^2-1}\)
\(=\frac{-4x}{\left(x+1\right)\left(x-1\right)}+\frac{4}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{-4x+4}{\left(x+1\right)\left(x-1\right)}=\frac{-4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{-4}{x+1}\)
Thay x = 0 vào B, ta được \(P=\frac{-4}{0+1}=-4\)
Vậy P = -4 khi \(x^2-x=0\)
c) \(B=-3\Leftrightarrow\frac{-4}{x+1}=-3\Leftrightarrow x+1=\frac{4}{3}\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy B = -3 khi \(x=\frac{1}{3}\)
d) \(B< 0\Leftrightarrow\frac{-4}{x+1}< 0\Leftrightarrow x+1>0\Leftrightarrow x>-1\)
Vậy x > - 1 thì B < 0
tích cho cậu là ấn vào link hay là thích
Câu 1:
\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)
Dấu "=" xảy ra <=> x = 0,3
Câu 2:
\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)
Câu 3:
\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)
=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)
Dấu "=" xảy ra <=> x = 1
a, ĐKXĐ: \(x\notin\left\{-2;\pm3\right\}\)
\(B=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{x-4}{x-3}-\frac{x-1}{x+3}\right):\frac{x+3-1}{x+3}\\ =\frac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+2}\\ =\frac{21+x^2-x-12-\left(x^2-4x+3\right)}{x-3}\cdot\frac{1}{x+2}\\ =\frac{x^2-x+9-x^2+4x-3}{\left(x-3\right)\left(x+2\right)}\\ =\frac{3x+6}{\left(x-3\right)\left(x+2\right)}\\ =\frac{3\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}=\frac{3}{x-3}\)
b, Ta có:
\(\left|2x+1\right|=5\Leftrightarrow\left\{{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-3\left(ktm\right)\end{matrix}\right.\)
Suy ra, với \(x=2\), ta được:
\(B=\frac{3}{2-3}=\frac{3}{-1}=-3\)
c, Để \(B=\frac{-3}{5}\) thì:
\(\frac{3}{x-3}=\frac{-3}{5}\\ \Leftrightarrow\frac{-3}{3-x}=\frac{-3}{5}\\ \Leftrightarrow3-x=5\Leftrightarrow x=-2\left(ktm\right)\)
Hay không có giá trị nào sao cho \(B=\frac{-3}{5}\).
d, Do 3>0 nên để B<0 thì: \(x-3< 0\Leftrightarrow x< 3\).
Kết hợp với ĐKXĐ, ta có điều kiện: \(\left\{{}\begin{matrix}x< 3\\x\notin\left\{-2;-3\right\}\end{matrix}\right.\)
Chúc bạn học tốt nha.
Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick
tử M=4x-8+3x+6-5x-2=2x
mẫu M=(x-2)(x+2)
2) tử=0=>x=0
mẫu =0=>x=+-2
M<0=>M<-2 hoaăc 0<m<2
1) a) ta có : \(4x^2+1-y^2-4x\Leftrightarrow\left(2x-2\right)^2-y^2=\left(2x-2-y\right)\left(2x-2+y\right)\)
b) \(2x^2-y^2+2xy-xy\Leftrightarrow2x\left(x+y\right)-y\left(x+y\right)=\left(2x-y\right)\left(x+y\right)\)
bài 2 : a) ta có : \(\dfrac{1}{2}x^2+2\left(\dfrac{1}{2}x+3\right)-12=0\Leftrightarrow\dfrac{1}{2}x^2+x-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{13}\\x=-1-\sqrt{13}\end{matrix}\right.\) câu này mk nghỉ đề sai
b) ta có : \(\left(4x-1\right)^2=4\Leftrightarrow\left[{}\begin{matrix}4x-1=2\\4x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
c) ta có : \(x\left(x-2018\right)-5x+2018.5=0\Leftrightarrow x^2-2023x+10090=0\)
\(\Leftrightarrow\left(x-2018\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=5\end{matrix}\right.\)
bài 3 câu này bn chỉ cần nhân tung ra rồi rút gọn lại ra số là kết luận đc .
Bài 1:
\(a,4x^2+1-y^2-4x\)
\(=\left(4x^2-4x+1\right)-y^2\)
\(=\left(2x-1\right)^2-y^2\)
\(=\left(2x-1-y\right)\left(2x-1+y\right)\)
\(b,2x^2-y^2+2xy-xy\)
\(=\left(2x^2+2xy\right)-\left(y^2+xy\right)\)
\(=2x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-y\right)\)
Bài 2:
\(a,\dfrac{1}{2}x^2-\left(2-4\right).\left(\dfrac{1}{2}x+3\right)=12\)
\(\Leftrightarrow\dfrac{1}{2}x^2+2\left(\dfrac{1}{2}x+1\right)=12\)
\(\Leftrightarrow\dfrac{1}{2}x^2+x+2=12\)
\(\Leftrightarrow\dfrac{1}{2}x^2+x-10=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{2}}x\right)^2+2.\dfrac{1}{\sqrt{2}}x.\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\dfrac{1}{2}-10=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{2}}x+\dfrac{1}{\sqrt{2}}\right)^2-\dfrac{21}{2}=0\)
cái này vẫn có thể giải tiếp đc nhg mk thấy nếu bn hok lớp 8 thì chưa đã hok đến cái này nên mk nghĩ bn nên kt lại đề bài
\(b,\left(4x-1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=2\\4x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
\(c,x\left(x-2018\right)-5x+2018.5=0\)
\(\Leftrightarrow x\left(x-2018\right)-5\left(x-2018\right)=0\)
\(\Leftrightarrow\left(x-2018\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=5\end{matrix}\right.\)
Bài 3: bn ơi đề sai
Đáp án cần chọn là: D