Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{56}-\dfrac{1}{67}\)
\(=1-\dfrac{1}{67}=\dfrac{66}{67}\)
\(E=\dfrac{1}{1\times2}+\dfrac{2}{2\times4}+\dfrac{3}{4\times7}+\dfrac{4}{7\times11}+\dfrac{5}{11\times16}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}\)
\(=1-\dfrac{1}{16}=\dfrac{15}{16}\)
#kễnh
A=1/1-1/2+1/2-1/4+1/4-1/7+1/7-1/11+1/11-1/16+1/16-1/22+1/22-1/29
A=1/1-1/29
A=28/29
1/1x2 + 2/2x4 + 3/4x7 + 4/7x11 +...+ 8/29x37 + 9/37x46
=2-1/1x2+4-2/2x4+...+46-37/37x46
=1-1/2+1/2-1/4+...+1/37-1/46
=1-1/46
=45/46
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{97\cdot100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)