Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

C = x^2 - 12x + 37
= (x^2 - 2.x.6 + 6^2) - 6^2 + 37
= (x - 6)^2 - 36 + 37
= (x - 6)^2 + 1 \(\ge\) 1
Dấu "=" xảy ra khi (x - 6)^2 = 0
=> x - 6 = 0
x = 6
Vậy C đạt GTNN khi x = 6
x2-12x+37 =(x2-12x-62)+1
(x-6)2+1
mà (x-6)2\(\ge\)0
=>(x-6)2+1\(\ge\)1
Vậy min C =1 khi x-6=0<->x=6
Chúc bn hok tốt

bớt xàm đi Đỗ Mai Linh ơi.ng ta chat hay ko vc ng ta.đây là nơi để học chứ éo pk nơi để ns linh tinh trên này đâu

Ta có:
x+y=4 và x2+y2=10
=>x;y khác 0
vì x+y=4
=> x và y đều chẵn hoặc x và y đều lẻ
TH1: x chẵn; y chẵn
thì => x và y chỉ có thể =2
Ta có: 22+22=4+4=8(ko thỏa mãn)
TH2: x và y đều lẻ=> x và y E { 1;3};{ 3;1}
32+12=9+1=10(thỏa mãn)
Ngược lại cũng thỏa mãn
=> x3+y3=33+13
hay y3+x3=33+13
Các phép tính trên đều = 33+13=27+1=28
=> x3+y3 hay y3+x3 đều = 28
(x+y)2=4
⇒x2+y2+2xy=4
⇒10+2xy=4
⇒2xy=−6
⇒xy=−3
Do đó x3+y3=(x+y).(x2+y2−xy)=2.[10−(−3)]=2.13=26

a/
\(\left(5xy^2-11x^3y+6x^2y^2\right)\div x^2y\)
\(=xy\left(5y-11x^2+6xy\right)\div x^2y\)
\(=\left(5y-11x^2+6xy\right)\div x\)
\(=\frac{5y}{x}-\frac{11x^2}{x}+\frac{6xy}{x}\)
\(=\frac{5y}{x}-11x+6y\)
b/ \(\left[\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3\right]\div\left[-5\left(x+y\right)^3\right]\)
\(=\left(x+y\right)^3\left[\left(x+y\right)^2-2\left(x+y\right)+3\right]\div\left[-5\left(x+y\right)^3\right]\)
\(=\frac{\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)

\(x^3+x^2+a=\left(x+2\right)\left(x^2-x-2\right)+\left(a+4\right)\)
Để x3+x2+a chia hết x +2 thì
a+4 = 0
=> a=-4
Đặt thương khi chia x4+ax+b cho x2 - 1 là Q(x), ta có:
\(x^4+ax+b=\left(x^2-1\right)Q\left(x\right)=\left(x-1\right)\left(x+1\right)Q\left(x\right)\)
Vì đẳng thức đúng với mọi x nên lần lượt cho x = 1 và x = -1, ta được:
\(\hept{\begin{cases}1+a+b=0\\1-a+b=0\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=-1\\a-b=1\end{cases}\Leftrightarrow}\hept{\begin{cases}a=0\\b=-1\end{cases}}}\)
Vậy với a = 0, b = -1 thì \(x^4+ax+b⋮x^2-1\)
P/s: đây là pp xét giá trị riêng