Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=2mu 101 - 2
b= 3 mu 2010 - 1
c=5mu 1999-1
d=4 mu n . 4 -4
a=2+22+...+2100
2a=22+23+24+...+2101
a=2a-a=a
=> a= 22+23+24+..+2101 -(2+2^2+...+2^100)
=>a= 2^101 -2
Bài 1:
a) \(8^5\cdot8^2=8^7\)
b) \(9^3\cdot3^2=\left(3^2\right)^3\cdot3^2=3^6\cdot3^2=3^8\)
c) \(2^7\cdot5^7=10^7\)
d) \(27^6:3^3=\left(3^3\right)^6:3^3=3^{18}:3^3=3^{15}\)
Bài 2:
a) \(x^6:x^3=125\)
\(\Rightarrow x^3=125\)
\(\Rightarrow x=5\)
b) \(x^{20}=x\)
\(\Rightarrow x^{20}-x=0\)
\(\Rightarrow x\left(x^{19}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{19}-1=0\Rightarrow x=1\end{matrix}\right.\)
c) \(3^x\cdot3=243\)
\(\Rightarrow3^x=81\)
\(\Rightarrow x=4\)
d) \(2x-138=2^3\cdot3^2\)
\(\Rightarrow2x-138=72\)
\(\Rightarrow2x=200\)
\(\Rightarrow x=100\)
Giải:
Bài 1:
a) \(8^5.8^2=8^{5+2}=8^7\)
b) \(9^3.3^2=3^6.3^2=3^{6+2}=3^8\)
c) \(2^7.5^7=\left(2.5\right)^7=10^7\)
d) \(27^6:3^3=3^{18}:3^3=3^{18-3}=3^{15}\)
Bài 2:
a) \(x^6:x^3=x^{6-3}=x^3=125\)
\(\Leftrightarrow x=5\)
b) \(x^{20}=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)
c) \(3^x.3=243\)
\(\Leftrightarrow3^{x+1}=243\)
\(\Leftrightarrow3^{x+1}=3^5\)
\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)
d) \(2.x-138=2^3.3^2\)
\(\Leftrightarrow2.x-138=8.9\)
\(\Leftrightarrow2.x-138=72\)
\(\Leftrightarrow2.x=72+138\)
\(\Leftrightarrow2.x=210\Leftrightarrow x=105\)
Chúc bạn học tốt!
(x-4):5=24-32
(x-4):5=16-9
(x-4):5=7
x-4=7.5
x-4=35
x=35+4
x=39
(2x-9):5=7
2x-9=7.5
2x-9=35
2x=35:-9
2x=-5
x=-5.2
x=-10
4(x-3)=52-110
4(x-3)=25-1
4(x-3)=24
x-3=24:4
x-3=6
x=6+3
x=9
ta có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{7^2}< \frac{1}{6.7}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{7^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{6.7}\)
mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(a,A=2^1+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
\(\Rightarrow2A-A=A=2^{2020}-2\)
\(B=1+3+3^2+3^3+...+3^{2020}\)
\(3B=3+3^2+3^3+...+3^{2021}\)
\(3B-B=2B=3^{2021}-1\)
\(B=\frac{3^{2021}-1}{2}\)
a,\(A=2^1+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=\left[2^2+2^3+2^4+...+2^{2020}\right]-\left[2^1+2^2+...+2^{2019}\right]\)
\(A=2^{2020}-2^1=2^{2020}-2\)
b, \(B=1+3+3^2+3^3+...+3^{2020}\)
\(3B=3+3^2+3^3+...+3^{2021}\)
\(3B-B=\left[3+3^2+3^3+...+3^{2021}\right]-\left[1+3+3^2+...+3^{2020}\right]\)
\(2B=3^{2021}-1\)
\(B=\frac{3^{2021}-1}{2}\)
Bài 1 a)75+256=331 b)845-120+455=1180 Bài 2 a)40+144=184 b)222-150+675=747 Bài 3 a)18.27-27.12=486-324=126 b)855-160+1045=1740 4 a)378-180=190 b)1188-290+1512=2410 5 a)147+48=195 b)1168-370+432=1230 6 a)153+75=228 b)2015-210+1085=2890