K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

dẹp luôn đi hỏi làm gì nữa

15 tháng 2 2022

Ghi thế ai trả lời đc bạn ơi

NV
28 tháng 2 2023

\(\dfrac{u_5}{u_2}=\dfrac{u_1.q^4}{u_1.q}=q^3=\dfrac{32}{4}=8\)

\(\Rightarrow q=2\)

NV
29 tháng 9 2020

\(sina+sinb+sinc+3=0\)

\(\Leftrightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)=0\)

Do \(\left\{{}\begin{matrix}sina\ge-1\\sinb\ge-1\\sinc\ge-1\end{matrix}\right.\) ;\(\forall a;b;c\)

\(\Rightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(sina=sinb=sinc=-1\)

\(\Rightarrow cosa=cosb=cosc=0\Rightarrow cosa+cosb+cosc+10=10\)

b/ \(sinx=1-sin^2x\Rightarrow sinx=cos^2x\)

\(\Rightarrow sin^2x=cos^4x\Rightarrow1-cos^2x=cos^4x\)

\(\Rightarrow cos^4x+cos^2x=1\Rightarrow\left(cos^4x+cos^2x\right)^2=1\)

\(\Rightarrow cos^8x+2cos^6x+cos^4x=1\)

24 tháng 4 2019

Chọn C.

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

31 tháng 1 2017

Chọn đáp án D

Có u n = u 1 + ( n - 1 ) d = 8 - 5 n

⇔ n = 8

NV
26 tháng 8 2020

Phép vị tự biến tam giác ABC thành AB'C' có diện tích:

\(S_{AB'C'}=k^2S_{ABC}=9.12=108\)

25 tháng 8 2020

Nguyễn Việt Lâm giúp mk vs bn :33

25 tháng 5 2017

a)
Gọi q là công bội của \(\left(u_n\right)\). Ta có:
\(\left\{{}\begin{matrix}u_1+u_1q^4=51\\u_1q+u_1q^5=102\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1+u_1q^4}{u_1q_1+u_1q^5}=\dfrac{51}{102}\)\(\Leftrightarrow\dfrac{1+q^4}{q+q^5}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1+q^4}{q\left(1+q^4\right)}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1}{q}=\dfrac{1}{2}\)\(\Leftrightarrow q=2\).
Suy ra: \(u_1+2^4u_1=51\)\(\Leftrightarrow17u_1=51\)\(\Leftrightarrow u_1=3\).
b) \(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}=\)\(\dfrac{3\left(1-2^n\right)}{1-2}=3\left(2^n-1\right)=3069\)
\(\Leftrightarrow2^n-1=1023\)\(\Leftrightarrow2^n=1024=2^{10}\)\(\Leftrightarrow n=10\).
Vậy tổng của 10 số hạng đầu tiên bằng 10.
c)
\(u_1.q^{n-1}=3.2^{n-1}=12288\)\(\Leftrightarrow2^{n-1}=4096=2^{12}\)\(\Leftrightarrow n-1=12\)\(\Leftrightarrow n=13\).
Vậy số hạng thứ 13 bằng 12 288.

NV
28 tháng 3 2021

3.

Đặt \(f\left(x\right)=x^4-3x^3+x-\dfrac{1}{8}\)

Hàm \(f\left(x\right)\) liên tục trên R

Do \(f\left(x\right)\) là đa thức bậc 4 nên có tối đa 4 nghiệm

Ta có: \(f\left(-1\right)=\dfrac{23}{8}>0\)

\(f\left(0\right)=-\dfrac{1}{8}< 0\Rightarrow f\left(-1\right).f\left(0\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(f\left(\dfrac{1}{2}\right)=\dfrac{1}{16}>0\Rightarrow f\left(0\right).f\left(\dfrac{1}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\dfrac{1}{2}\right)\)

\(f\left(1\right)=-\dfrac{9}{8}< 0\Rightarrow f\left(\dfrac{1}{2}\right).f\left(1\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(\dfrac{1}{2};1\right)\)

\(f\left(3\right)=\dfrac{23}{8}>0\Rightarrow f\left(1\right).f\left(3\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;3\right)\)

Vậy pt có 4 nghiệm thuộc các khoảng nói trên

NV
28 tháng 3 2021

4.

\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+ax+2017}+x\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{ax+2017}{\sqrt{x^2+ax+2017}-x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{2017}{x}}{-\sqrt{1+\dfrac{a}{x}+\dfrac{2017}{x^2}}-1}=-\dfrac{a}{2}\)

\(\Rightarrow-\dfrac{a}{2}=6\Rightarrow a=-12\)

17 tháng 2 2022

ngày 19 là ngày thứ 6 - ngày cuối cùng của tháng 8 - là ngày thứ tư-tháng 8 có tổng cộng 4 ngày chủ nhật

17 tháng 2 2022

• ngày 19 tháng 8 là ngày thứ sáu.

\(\text{• Ngày cuối cùng của tháng 8 là ngày 31 và là ngày thứ tư}\)

• Tháng 8 có bốn ngày chủ nhật. Đó là những ngày: 7, 14, 21, 28 tháng 8

\(\text{• Chủ nhật cuối cùng của tháng 8 là ngày 28 tháng 8}\)

18 tháng 9 2017

a )   u 1   =   3 ,   q   =   2     b )   n   =   10     c )   n   =   13