Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ix-1I và I1-xI là 2 số đối nhau nên tổng của chúng luôn =0 với mọi x.
=> 4-x=0 => x=4
Đs: x=4
a, 2x+1=3x-5
1=x-5(giảm cả hai vế đi 2x)
1+5=x
x=6
b,2.(x.2)=5x-1/2
2.2.x=5x-1/2
4x=5x-1/2
4x+1/2=5x(giảm cả hai vế đi 4x)
1/2=x
c,lx-1l=1/2
lxl=1/2+1
lxl=1,5
x=1,5;-1,5
d,I2-3xI+1/2=2/3
l2-3xl=2/3-1/2
l2-3xl=1/3
l3xl=2-1/3
l3xl=5/3
lxl=5/3:3
lxl=5/9
x=5/9;-5/9
e,1/2x-2/3=1/4
1/2x=1/4+2/3
1/2x=11/12
x=11/12:1/2
x=11/6
j,3.(2x-1)=x-2
6x-3=x-2
6x-1=x
1=6x-x
1=5x
x=1/5
g,I1/2x-1I=1/3
l1/2xl=1/3+1
l1/2xl=4/3
lxl=4/3:1/2
lxl=8/3
x=8/3;-8/3
h,I3x-2I-1/2=1
l3x-2l=1+1/2
l3x-2l=3/2
l3xl=3/2+2
l3xl=7/2
lxl=7/2:3
lxl=7/6
x=7/6;-7/6
\(\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
Ta có: \(\left\{{}\begin{matrix}\left|x-7\right|+\left|3-x\right|\ge\left|x-7+3-x\right|=4\\\dfrac{12}{\left|y+1\right|+3}\le\dfrac{12}{3}=4\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
\(\Rightarrow\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}=4\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}3\le x\le7\\y=-1\end{matrix}\right.\)
a) \(\left|x-7\right|\ge x-7\Rightarrow A\ge x-7+3-x=-4\)
Dấu "=" xảy ra <=> \(x-7\ge0\Leftrightarrow x\ge7\)
b)\(\left|x+7\right|\ge x+7;\left|x+3\right|\ge0;\left|x+1\right|\ge-x-1\Rightarrow B\ge x+7+0-x-1=6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+7\ge0\\x+3=0\\x+1\le0\end{cases}\Leftrightarrow x=-3}\)
c) \(\left|2-x\right|\ge x-2;\left|5-x\right|\ge5-x\Rightarrow C\ge x-2+5-x=3\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}2-x\le0\\5-x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\le5\end{cases}}\)
/ 2-x/ =/x -2/ = x -2 >/ 0
=> x >/ 2
x thuộc Z
=> x =2 ( nhỏ nhất)
Ta có : |2x - 3| \(\ge0\forall x\in R\)
Suy ra : 1 - |2x - 3| \(\le1\forall x\in R\)
=> Giá trị lớn nhất của biểu thức là 1 khi x = 3/2
Hãy tích cho tui đi
khi bạn tích tui
tui không tích lại bạn đâu
THANKS
#)Giải :
\(\left|2-x\right|+2=x\)
\(\Rightarrow\orbr{\begin{cases}\left|2-x\right|=x\\2=x\end{cases}\Rightarrow x=2}\)
Vậy \(x=2\)
\(\left|x-1\right|\left|-x-1\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-1\right|=0\\\left|-x-1\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x\in\left\{1;-1\right\}\)