![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,-12(x-5)+7(3-x)=5
=>-12x+60+21-7x=5
=>-12x-7x+60+21=5
=>-19x+81=5
=>-19x=5-81
=>-19x=-76
=>x=(-76):(-19)
=>x=4
2,(x-2) (x+4) =0
=>+,x-2=0 => x=2
+,x+4=0 => x=-4
Vậy x=2 hoặc x=-4
3,(x-2) (x+15) =0
=>+,x-2=0 =>x=2
+,x+15=0 =>x=-15
Vậy x=2 hoặc x=-15
4,(7-x) (x+19) =0
=>+,7-x=0 =>x=7
+,x+19=0 =>x=-19
Vậy x=7 hoặc x=-19
5,(x-3) (x-5)<0
=>x-3 và x-5 là hai số khác dấu
TH1
+,x-3<0 =>x<3(1)
+,x-5>0 =>x>5 (2)
Từ (1) và(2) => 5<x<3(Vô lí nên trường hợp này bị loại)
TH2
+,x-3>0 =>x>3 (3)
+,x-5<0 =>x<5 (4)
Từ (3) và (4) =>3<x<5 => x=4
Vậy x=4
Chú bn hc tốt hơn nha!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x^2-5\right)\left(x^2+1\right)=0\)
<=> \(\hept{\begin{cases}x^2-5=0\\x^2+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x^2=5\\x^2=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{5};x=-\sqrt{5}\\x\in\varnothing\end{cases}}\)
câu còn lại tương tự nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (2x-5) + 17 = 6
2x - 5 = 6 - 17
2x - 5 = -11
2x = -11 + 5
2x = -6
x = -6 : 2
x = -3
* Các câu b→e bạn cũng làm tương tự theo trật tự như vậy là được
* Các câu từ g → l thì bạn áp dụng lí thuyết sau:
Tích của hai số bằng 0 khi một trong hai số đó bằng 0
VD : g) x(x+7)=0
⇒ hoặc là x = 0 hoặc là x+7 = 0
( Bạn làm phép tính nhớ bỏ dấu ngoặc vuông trước nhé )
b: \(\Leftrightarrow2\left(4-3x\right)=14\)
=>4-3x=7
=>3x=-3
=>x=-1
c: \(\Leftrightarrow3\left(7-x\right)=-18+12=-6\)
=>7-x=-2
=>x=9
d: \(\Leftrightarrow3x-2=-\dfrac{1}{8}\)
=>3x=15/8
=>x=5/8
e: \(\Leftrightarrow5\left(3x-2x\right)=-15\)
=>x=-3
g: =>x=0 hoặc x+7=0
=>x=0 hoặc x=-7
h: =>x+12=0 hoặc x-3=0
=>x=3 hoặc x=-12
k: =>x=0 hoặc x+2=0 hoặc 7-x=0
=>\(x\in\left\{0;-2;7\right\}\)
l: =>x-1=0 hoặc x+2=0 hoặc x+3=0
=>\(x\in\left\{1;-2;-3\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: x(x-3)<0
=>x>0 và x-3<0
=>0<x<3
mà x là số nguyên
nên \(x\in\left\{1;2\right\}\)
b: x(x+2)<0
=>x+2>0và x<0
=>-2<x<0
mà x là số nguyên
nen x=-1
c: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
\(\Leftrightarrow1< x^2< 4\)
mà x là số nguyên
nên \(x\in\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:tìm x thuộc Z
a)x.(x-1)=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy: \(x=0;1\)
b)(x-3).(x+4)=0
\(\Leftrightarrow\left[\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Vậy: \(x=3;-4\)
c)(2x-4).(x+2)=0
\(\Leftrightarrow2\left(x-2\right).\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x=2;-2\)
d)(x+1)^2.(x-2)^2=0
\(\Leftrightarrow\left[\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy: \(x=-1;2\)
e) x(x+1).(x+2)^2.(x+3)^3=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x+1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy: \(x=0;-1;-2;-3\)
f)(x-9)^5.(x-5)^8=0
\(\Leftrightarrow\left[\begin{matrix}x-9=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=9\\x=5\end{matrix}\right.\)
Vậy: \(x=9;5\)
g)x(x+100)^10.(x+2000)^20.(x+300)^300=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x+100=0\\x+200=0\\x+300=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-100\\x=-200\\x=-300\end{matrix}\right.\)
Vậy: \(x=0;-100;-200;-300\)
h)(x-2)^2=0
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy: \(x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\left(x-3\right)\left(x^2-9\right)\left(\left|x+4\right|\right)\)
=> \(\left(x-3\right)\left(x+4\right)\left(x^2-9\right)\)
=> \(\left\{{}\begin{matrix}x-3=0\\x+4=0\\x^2-9=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=3\\x=-4\\x=-3\end{matrix}\right.\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{3;-4;-3\right\}\)