Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=1+2+2^2+2^3+......+2^{2015}\)
\(\Leftrightarrow2A=2+2^2+2^3+......+2^{2016}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+......+2^{2016}\right)-\left(1+2+2^2+2^3+......+2^{2015}\right)\)
\(\Leftrightarrow A=2^{2016}-1\)
Vậy \(A=2^{2016}-1\)
6)Ta có: \(13+23+33+43+.......+103=3025\)
\(\Leftrightarrow2.13+2.23+2.33+2.43+.......+2.103=2.3025\)
\(\Leftrightarrow26+46+66+86+.......+206=6050\)
\(\Leftrightarrow\left(23+3\right)+\left(43+3\right)+\left(63+3\right)+\left(83+3\right)+.......+\left(203+3\right)=6050\)
\(\Leftrightarrow23+43+63+83+.......+203+3.10=6050\)
\(\Leftrightarrow23+43+63+83+.......+203+=6050-30\)
\(\Leftrightarrow23+43+63+83+.......+203+=6020\)
Vậy S=6020
b, B có 19 thừa số
=> \(-B=(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})...(1-\frac{1}{400}) \)
<=>\(-B=\frac{(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)...(20-1)(20+1)}{4.9.16...400} \)
<=>\(-B=\frac{(1.2.3.4...19)(3.4.5...21)}{(2.3.4.5.6...20)(2.3.4.5...20)} \)
<=>\(-B=\frac{21}{20.2} =\frac{21}{40} \)
<=>\(B=\frac{-21}{40} \)
2003x2004=(2002 + 1)x(2005 - 1)
=2002 x 2005 +2005 - 2002 - 1
=2002 x 2005 +2
vậy 2003 x 2004 lớn hơn nhé
chúc bn học tốt
a:
\(A=\left|x-2013\right|+\left|2014-x\right|>=\left|x-2013+2014-x\right|=1\)
Dấu = xảy ra khi 2013<=x<=2014
\(B=\left|x-123\right|+\left|456-x\right|>=\left|x-123+456-x\right|=333\)
Dấu = xảy ra khi 123<=x<=456
b: \(\left|x\right|+2004>=2004\)
=>A<=2013/2004
Dấu = xảy ra khi x=0
\(B=\dfrac{\left|x\right|+2002+1}{\left|x\right|+2002}=1+\dfrac{1}{\left|x\right|+2002}< =1+\dfrac{1}{2002}=\dfrac{2003}{2002}\)
Dấu = xảy ra khi x=0
\(\dfrac{x+10}{2003}+\dfrac{x+6}{2007}+\dfrac{x+12}{2001}+3=0\)
<=>\(\dfrac{x+10}{2003}+1+\dfrac{x+6}{2007}+1+\dfrac{x+12}{2001}+1=0\)
<=>\(\dfrac{x+2013}{2003}+\dfrac{x+2013}{2007}+\dfrac{x+2013}{2001}=0\)
<=>\(\left(x+13\right)\left(\dfrac{1}{2003}+\dfrac{1}{2007}+\dfrac{1}{2001}\right)=0\)
vì 1/2003+1/2007+1/2001 khác 0
=>x+13=0<=>x=-13
vậy.............
- Ta có : \(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
=> \(\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\frac{x-3}{2002}-1+\frac{x-4}{2001}-1\)
=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}=\frac{x-2005}{2002}+\frac{x-2005}{2001}\)
=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)
=> \(\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x-2005=0\)
=> \(x=2005\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{2005\right\}\)
a; \(A=2\left(1+2+2^2+2^3\right)+...+2^{2001}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+...+2^{2001}\right)\) chia hết cho 3 và 15
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2002}\right)⋮7\)
b: \(3B=3^2+3^3+...+3^{2006}\)
=>\(2B=3^{2006}-3\)
=>\(2B+3=3^{2006}\) là lũy thừa của 3
Bài 1:
1: \(=x^6+27-x^6-9x^4-27x^2-27\)
\(=-9x^4-27x^2\)
2: \(=x^3-9x^2+27x-27-x^3+27+6x^2+12x+6\)
\(=-3x^2+39x+6\)
Bài 2:
Sửa đề: \(\dfrac{2006^3+1}{2006^2-2005}\)
\(=\dfrac{\left(2006+1\right)\left(2006^2-2006+1\right)}{2006^2-2005}\)
\(=2006+1=2007\)
\(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}\)
\(=\dfrac{2002+1}{\sqrt{2003}}+\dfrac{2013-1}{\sqrt{2002}}+\dfrac{1}{\sqrt{2002}}-\dfrac{1}{\sqrt{2003}}\)
\(=\sqrt{2003}+\sqrt{2002}+\dfrac{1}{\sqrt{2002}}-\dfrac{1}{\sqrt{2003}}\)
\(>\sqrt{2003}+\sqrt{2002}+\dfrac{1}{\sqrt{2003}}-\dfrac{1}{\sqrt{2003}}=\sqrt{2003}+\sqrt{2002}\left(đpcm\right)\)
ai ra đề cho 1 lạy
HELP ME!