Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(12x^3-7x^2-14x+14): (4x-5)= (3x^2+2x-1)+9: (4x-5). Để (12x^3-7x^2-14x+14)chia hết cho (4x-5) thì 9 phải chia hết cho(4x-5).=>4x-5 thuộc vào ước của 9=+-1;+-3;+-9.xét từng giá trị để tìm x thỏa mãn khi x<0. Sau đó kết luận.
=>x^3-2x^2+x^2-4+4 chia hết cho x-2
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương
Đặt f(x) = 3x3 + x2 + x - a + 1
Theo định lý Bơ-du, số dư khi chia f(x) cho x - 3 bằng f(3)
Ta có: f(3) = 3. 33 + 32 + 3 - a + 1 = 94 - a
Để (3x3 + x2 + x - a + 1) ⋮ (x - 3) thì f(3) = 0
=> 94 - a = 0 => a = 94
Vậy với a = 94 thì (3x3 + x2 + x - a + 1) ⋮ (x - 3)
Áp dụng định lý Bezout ta có:
f(x) chia hết cho x-3 \(\Rightarrow f\left(3\right)=0\)
\(\Leftrightarrow2a+3b=-87\left(1\right)\)
g(x) chia hết cho x-3 \(\Rightarrow g\left(3\right)=0\)
\(\Leftrightarrow-3a+2b=-318\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2a+3b=-87\\-3a+2b=-318\end{cases}\Leftrightarrow}\hept{\begin{cases}a=60\\b=-69\end{cases}}\)
Vậy ...
=>n^2-2n-3n+6+1 chia hết cho n-2
=>\(n-2\in\left\{1;-1\right\}\)
hay \(n\in\left\{3;1\right\}\)