Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a,
\(a-\left(b+a\right)=-b\)
b,
\(\left(a+b+c\right)-\left(a+b-c\right)\)
= \(a+b+c-a-b+c\)
= \(2c\)
c,
\(\left(a+b-c\right)+\left(a-b+c\right)-\left(b+c-a\right)-\left(a-b-c\right)\)
= \(a+b-c+a-b+c-b-c-a-a+b-c\)
= \(a+b+\left(-c\right)+a+\left(-b\right)+c+\left(-b\right)+\left(-c\right)+\left(-a\right)+\left(-a\right)+b+\left(-c\right)\)
=\(\left(a+a+\left(-a\right)+\left(-a\right)\right)+\left(b+\left(-b\right)+\left(-b+b\right)\right)+\left(-c+c+\left(-c\right)+-c\right)\)
= 0
\(\left\{{}\begin{matrix}A=a-b+c\\B=a+b-c\end{matrix}\right.\)
Ta có : Nếu chúng đối nhau thì :
\(A+B=0\)
\(\Rightarrow\left(a-b+c\right)+\left(a+b-c\right)=0\)
\(\Rightarrow a-b+c+a+b-c=0\)
\(\Rightarrow\left(a+a\right)+\left(b-b\right)+\left(c-c\right)=0\)
\(\Rightarrow2a=0\)
\(\Rightarrow a=0\)
\(\Rightarrow A\) đối \(B\rightarrowđpcm\)
a) \(a\cdot\left(b-c\right)-a\cdot\left(b+d\right)\)
\(=a\cdot b-a\cdot c-a\cdot b+a\cdot d\)
\(=0-a\cdot\left(c+d\right)\)
\(=-a\cdot\left(c+d\right)\)
Bài 1 : Biến đổi vế trái , ta có :
\(\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=\left(a-a\right)-\left(c+c\right)+\left(-b-d\right)\)
\(=-b-d=-\left(b+d\right)\)
Vậy đẳng thức được CM
b, Biến đổi vế trái , ta có :
\(\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=\left(a+d\right)+\left(-b+b\right)+\left(-c+c\right)=a+d\)
Vậy đẳng thức được CM .
Bài 2 : Gọi \(d=ƯCLN\left(2n+1,2n+3\right)\)
\(\Rightarrow\left\{\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Vì : với mọi STN n thì 2n + 1 và 2n + 3 là số lẻ
\(\Rightarrow d=1\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)
Vậy ...
p/s : bài 2 đề có sai k mợ ?? :vv
a, (a-b+c)-(a+c)=-b
<=>a-b+c-a-c=-b
<=>(a-a)+(c-c)-b=-b
<=>0+0-b=-b
<=>-b=-b
Vậy (a-b+c)-(a+c)=-b
b) (a+b)-(b-a)+c=2a+c
<=>a+(b-b)+a+c=2a+c
<=>a+a+c=2a+c
<=>2a+c=2a+c
Vậy (a+b)-(b-a)+c=2a+c
c) -(a+b-c)+(a-b-c)=-2b
<=>-a-b+c+a-b-c=-2b
<=>(-a+a)+(c-c)-(b+b)=-2b
<=>0+0-2b=-2b
<=>-2b=-2b
Vậy -(a+b-c)+(a-b-c)=-2b
d) a(b+c)-a(b+d)=a(c-d)
<=>ab+ac-ab-ad=a(c-d)
<=>a(b+c-b-d)=a(c-d)
<=>a(c-d)=a(c-d)
Vậy a(b+c)-a(b+d)=a(c-d)
e) a(b-c)+a(c+d)=a(b+d)
<=>ab-ac+ac+ad=a(b+d)
<=>a(b-c+c+d)=a(b+d)
<=>a(b+d)=a(b+d)
Vậy a(b-c)+a(c+d)=a(b+d)
a) Mình sửa lại 1 chút ở VP=-3b
Ta có: VT=-2(a+b-2c)+(2a-b-4c)
=-2a-2b+4c+2a-b-4c=-3b
=> VT=VP (đpcm)
b) Ta có VT=(a-b-c)-(a-b+c)=a-b-c-a+b-c=-2c
=> VT=VP (đpcm)
ta co : -(a-b-c)+(-a+b-c)-(-a+b+c)=-a+b+c+(-a)+b+(-c)+a-b-c
=(-a+a)+(b-b)+(c-c)-a+b+(-c)
=-a+b+(-c)
=-(a-b+c)
\(\Rightarrow dpcm\)
1 : A
2 : D
3 : D
4 : A
Mik làm như thế này cô mik bảo đúng
Nên mik chắc 100 %