Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
a) ĐKXĐ: x - 2 \(\ne\)0 x \(\ne\)2
x + 2 \(\ne\)0 => x\(\ne\)-2 =>x \(\ne\)\(\pm\)2 và x \(\ne\)-10
x2 - 4 \(\ne\)0 x \(\ne\)\(\pm\)2
x + 10 \(\ne\)0 x \(\ne\)-10
b) Ta có: P = \(\left(\frac{x+5}{x-2}+\frac{3x}{x+2}-\frac{4x^2}{x^2-4}\right)\cdot\frac{x^2+2x}{x+10}\)
P = \(\left(\frac{\left(x+5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x\left(x+2\right)}{x+10}\)
P = \(\left(\frac{x^2+2x+5x+10+3x^2-6x-4x^2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x\left(x+2\right)}{x+10}\)
P = \(\frac{x+10}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x\left(x+2\right)}{x+10}\)
P = \(\frac{x}{x-2}\)
c)Với x \(\ne\)\(\pm\)2 và x \(\ne\)-10
Ta có: x2 - x - 6 = 0
=> x2 - 3x + 2x - 6 = 0
=> x(x - 3) + 2(x - 3) = 0
=> (x + 2)(x- 3) = 0
=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\left(ktm\right)\\x=3\end{cases}}\)
Với x = 3 => P = \(\frac{3}{3-2}=3\)
Ở bài 1.a) Bạn ghi thêm điều kiện \(x\ne1\)nhé.
Bài 1.b) x là số nguyên nên khỏi cần ghi thêm điều kiện cho x. ^^
a)\(M=\frac{x^3-2x^2+3x+3}{x-1}=\frac{\left(x^3-3x^2+3x-1\right)+\left(x^2-2x+1\right)+\left(2x+3\right)}{x-1}=\frac{\left(x-1\right)^3+\left(x-1\right)^2+2\left(x-1\right)+5}{x-1}=\left(x-1\right)^2+\left(x-1\right)+2+\frac{5}{x-1}\)
Vì x nhận giá trị nguyên nên để M là số nguyên thì \(x-1\inƯ\left(5\right)\)
\(\Rightarrow x-1\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-4;0;2;6\right\}\)
b) \(N=\frac{2x^3-5x^2+8x+8}{2x-1}=\frac{x^2\left(2x-1\right)-\left(4x^2-4x+1\right)+2\left(2x-1\right)+11}{2x-1}=x^2-\left(2x-1\right)+2+\frac{11}{2x-1}\)
Đến đây bạn làm tương tự câu a) nhé ^^
Bài 2 :
a) \(P=\frac{3x^2+3x+17}{x^2-x+5}=\frac{-2\left(x^2-4x+4\right)+5\left(x^2-x+5\right)}{x^2-x+5}=\frac{-2\left(x-2\right)^2}{x^2-x+5}+5\le5\)
Vậy Max P = 5 <=> x = 2
b) \(Q=\frac{x^2+3x+4}{x^2+3x+5}=\frac{11\left(x^2+3x+4\right)}{11\left(x^2+3x+5\right)}=\frac{\left(4x^2+12x+9\right)+7\left(x^2+3x+5\right)}{11\left(x^2+3x+5\right)}=\frac{\left(2x+3\right)^2}{11\left(x^2+2x+5\right)}+\frac{7}{11}\ge\frac{7}{11}\)Vậy Min Q = \(\frac{7}{11}\Leftrightarrow x=-\frac{3}{2}\)
\(A=2x^3+x^2+\frac{2x+2}{2x+1}=2x^3+x^2+1+\frac{1}{2x+1}\)
Đề bài cho x nguyên nên \(2x^3+x^2+1\)cũng nguyên
Để A nguyên \(\Leftrightarrow\frac{1}{2x+1}\)nguyên\(\Rightarrow1⋮2x+1\)\(2x+1\inƯ\left(-1\right)=\left(1;-1\right)\)
2x+1=1 => x=0
2x+1=-1 =>x=-1
bạn ơi đề bài là
\(\frac{2x^3+x^2+2x+2}{2x+1}\)
hay 2x^3+x ^2+2x+\(\frac{2}{2x+1}\)
Ta có: A = x2 + 2x + y2 - 4y - 4 = (x2 + 2x + 1) + (y2 - 4y + 4) - 9 = (x + 1)2 + (y - 2)2 - 9
Ta luôn có: (x + 1)2 \(\ge\)0 \(\forall\)x
(y - 2)2 \(\ge\)0 \(\forall\)y
=> (x + 1)2 + (y - 2)2 - 9 \(\ge\)-9 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
vậy Min của A = -9 tại x = -1 và y = 2