Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n-3⋮n-1\)
\(\Rightarrow2n-3+n-1⋮n-1\)
\(\Rightarrow2n-3+2\left(n-1\right)⋮n-1\)
\(\Rightarrow2n-3+2n-2⋮n-1\)
\(\Rightarrow1⋮n-1\)
\(\Rightarrow n-1\inƯ\left(1\right)=1\)
\(\Rightarrow n=2\)
2n+3=2n+2+1=2(n+1)+1
để 2n+3 \(⋮\)n+1 thì 2(n+1)+1 \(⋮\)n+1
Mà 2(n+1) \(⋮\)n+1=> 1 \(⋮\)n+1
=> n+1\(\in\)Ư(1)={1;-1}
. Nếu n+1=1=> n=0
.Nếu n+1 =-1=> n=-2
vậy nếu n=0 hoặc n=-2 thì 2n-3 chia hết cho n+1
c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
- Số dư của phép chia này là 7 nên ta có:
\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
- Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.
\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
- Từ (1) và (2) ta có:
\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
- Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Viết kết quả các phép chia này ta được:
\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
2n - 3 chia hết cho n + 1.
=> 2n + 2 - 5 chia hết cho n + 1.
Mà 2n + 2 chia hết cho n + 1.
=> 5 chia hết cho n + 1.
=> n + 1 thuộc Ư(5).
=> n + 1 thuộc {1; 5}
=> n thuộc {0; 4}
Vậy n thuộc {0; 4}
Ta có: \(2n-3⋮n+1\)
\(\Leftrightarrow2n+2-5⋮n+1\)
\(\Leftrightarrow2.\left(n+1\right)-5⋮n+1\)
mà \(2.\left(n+1\right)⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tìm nốt x nhé.
Theo đề bài : 2n - 3 chia hết cho n + 1
=> 2n -3 - (n + 1) chia hết cho n + 1
=> 2n - 3 - 2(n+1) chia hết cho n + 1
=> 2n - 3 - 2n - 2 chia hết cho n + 1
=> 1 chia hết cho n + 1
=> n + 1 = { 1 ; -1}
=> n = { 0 ; -2 }
Vì n thuộc Z*
=> n = -2
Vậy n = -2