K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

1.

a, Phương trình có nghiệm khi: 

\(\left(m+2\right)^2+m^2\ge4\)

\(\Leftrightarrow m^2+4m+4+m^2\ge4\)

\(\Leftrightarrow2m^2+4m\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)

b, Phương trình có nghiệm khi:

\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)

\(\Leftrightarrow2m^2+6m\le0\)

\(\Leftrightarrow-3\le m\le0\)

13 tháng 8 2021

2.

a, Phương trình vô nghiệm khi:

\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)

\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)

\(\Leftrightarrow4m^2-7< 0\)

\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)

b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)

\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)

 Phương trình vô nghiệm khi:

\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)

\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)

\(\Leftrightarrow m^2-1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

29 tháng 11 2019

9 tháng 3 2017

Đáp án D

Phương trình có nghiệm

9 tháng 4 2018

NV
17 tháng 9 2020

c/

\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=x+\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

2.

Theo điều kiện có nghiệm của pt lượng giác bậc nhất với sin và cos:

\(m^2+\left(m-1\right)^2\ge5\)

\(\Leftrightarrow m^2-m-2\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)

NV
17 tháng 9 2020

a/

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{3}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\sqrt{\frac{3}{2}}>1\)

Pt vô nghiệm

b/

\(\Leftrightarrow\frac{2}{\sqrt{13}}sinx+\frac{3}{\sqrt{13}}cosx=\frac{2}{\sqrt{13}}\)

Đặt \(\frac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow sinx.cosa+cosx.sina=cosa\)

\(\Leftrightarrow sin\left(x+a\right)=sin\left(\frac{\pi}{2}-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+a=\frac{\pi}{2}-a+k2\pi\\x+a=\frac{\pi}{2}+a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}-2a+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
11 tháng 11 2021

\(\Rightarrow sinx+2=m.cosx\)

\(\Rightarrow sinx-m.cosx=-2\)

Pt đã cho vô nghiệm khi:

\(1^2+\left(-m\right)^2< \left(-2\right)^2\)

\(\Rightarrow m^2< 3\)

\(\Rightarrow-\sqrt{3}< m< \sqrt{3}\)

NV
10 tháng 10 2020

a/

\(\left(m+1\right)^2+\left(m-1\right)^2\ge\left(2m+3\right)^2\)

\(\Leftrightarrow2m^2+12m+7\le0\)

\(\Leftrightarrow\frac{-6-\sqrt{22}}{2}\le m\le\frac{-6+\sqrt{22}}{2}\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m-1\right)^2+4m\ge m^4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^4-\left(m+1\right)^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m^2+m+1\right)\left(m^2-m-1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow0\le m\le\frac{1+\sqrt{5}}{2}\)

c/ \(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}=m\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)+\frac{1}{2}=m\)

Do \(-\frac{1}{2}\le sin\left(2x-\frac{\pi}{3}\right)\le\frac{3}{2}\Rightarrow-\frac{1}{2}\le m\le\frac{3}{2}\)

13 tháng 6 2019

Hướng dẫn giải:

Chọn A.

Ta có: sin2x – 2( m- 1)sinx. cosx – (m- 1).cos2x = m