Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 10x + 15 = 10x + 2 +13
để A nhận giá trị là số nguyên thì 10x+15 chia hết cho 5x+1 hay 10x+2+13 chia hết cho 5x+1 mà 10x+2 chia hết cho 5x+1 nên 13 chia hết cho 5x+1 suy ra 5x+1 thuộc Ư(13)
ma U(13) = {-13;-1;1;13} suy ra 5x + 1 thuoc { -13;-1;1;13}
vì x nguyên nên ta có bảng sau
5x+1 | -13 | -1 | 1 | 13 |
x | -14/5 | -2/5 | 0 | 12/5 |
n/xét | loai | loai | chon | loai |
vậy với x = 0 thì A nhận giá tri nguyên
Ta có 10x + 15 = 10x + 2 +13
để A nhận giá trị là số nguyên thì 10x+15 chia hết cho 5x+1 hay 10x+2+13 chia hết cho 5x+1 mà 10x+2 chia hết cho 5x+1 nên 13 chia hết cho 5x+1 suy ra 5x+1 thuộc Ư(13)
ma U(13) = {-13;-1;1;13} suy ra 5x + 1 thuoc { -13;-1;1;13}
vì x nguyên nên ta có bảng sau
5x+1 | -13 | -1 | 1 | 13 |
x | -14/5 | -2/5 | 0 | 12/5 |
n/xét | loai | loai | chon | loai |
vậy với x = 0 thì A nhận giá tri nguyên
a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên
và x2 luôn tự nhiên => 5x âm
=> GTTĐ của x2 < GTTĐ của 5x
=> x < 5
=> x thuộc {4; 3; 2; 1;....}
Vậy....
Để \(\frac{3}{x^2+x+1}\) nhận giá trị nguyên \(\Leftrightarrow x^2+x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Mà \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Nên \(x^2+x+1=\left\{1;3\right\}\)
TH1: \(x^2+x+1=1\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)
TH2\(x^2+x+1=3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\left(TM\right)\)
Vậy \(x\in\left\{-2;-1;1;0\right\}\)
10x + 15 / 5x+1 =2x. (5x+ 1) + 13/ 5x + 1
= 1 + 2x + 13 / 5x + 1 để A/frac/ 2x + 13/ 5x+1 nhận giá trị nguyên thì :
2x + 13 phải chia hết cho 5x +1 , ta có :
2x + 13 = 5x +1
=> 2x + 5x = 13 +1
=> 7x =14
=> x= 2
Vậy x = 2 thì A có giá trị nguyên
\(A=\frac{10x+15}{5x+1}=\frac{2\left(5x+1\right)+13}{5x+1}=\frac{2\left(5x+1\right)}{5x+1}+\frac{13}{5x+1}\)
\(\Rightarrow5x+1\inƯ\left(13\right)=\left(-13;-1;1;13\right)\)
Ta có: \(5x+1=-13\Rightarrow x=-\frac{14}{5}\left(loại\right)\)
\(5x+1=-1\Rightarrow x=-\frac{2}{5}\left(loại\right)\)
\(5x+1=1\Rightarrow x=0\left(chọn\right)\)
\(5x+1=13\Rightarrow x=\frac{12}{5}\left(loại\right)\)
Vậy x=0
\(P=\dfrac{x^2-3x-11}{x-2}=\dfrac{x\left(x-2\right)-\left(x-2\right)-13}{x-2}=x-1-\dfrac{13}{x-2}\)
Do \(x\) nguyên, để \(P\) nguyên thì \(x-2\inƯ\left(13\right)=\left\{1;-1;13;-13\right\}\)
Khi \(x-2=1\) ta được \(x=3\)
Khi \(x-2=-1\) ta được \(x=1\)
Khi \(x-2=13\) ta được \(x=15\)
Khi \(x-2=-13\) ta được \(x=-11\)
Vậy các giá trị thỏa mãn là \(x\in\left\{3;1;15;-11\right\}\)