K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

bài dễ như thế mà còn hỏi nữa

1 tháng 1 2019

Câu 1:

\(Tacó\)

\(\frac{2}{2x-1}+\frac{4x^2+1}{4x^2-1}-\frac{1}{2x+1}=\frac{2}{2x-1}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{1}{2x+1}\)

\(=\frac{4x+2}{\left(2x+1\right)\left(2x-1\right)}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{2x-1}{\left(2x+1\right)\left(2x-1\right)}\)

\(=\frac{4x+2+4x^2+1-2x+1}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x\left(2x+1\right)+4}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x+4}{2x-1}\)

\(b,x=\frac{1}{2}\Rightarrow2x-1=0\left(loại\right)\)

..... 2 câu sau easy

18 tháng 9 2018

Theo mk nghĩ thì đề bài fải như thế này:

\(\left(4x^5+2x^4+4x^3-x^2-1\right):\left(2x^3+x-1\right)\)

Kết quả của phép chia trên là: \(2x^2+x+1\)

Ta có: \(2x^2+x+1=2\left(x^2+\frac{1}{2}x+\frac{1}{2}\right)\)

\(=2\left(x^2+\frac{1}{2}x+\frac{1}{16}+\frac{7}{16}\right)\)

\(=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\forall x\)

=> Min = 7/8 tại \(2\left(x+\frac{1}{4}\right)^2=0\Rightarrow x=-\frac{1}{4}\)

=.= hok tốt!!

10 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right).\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)

\(\Leftrightarrow Q=\left(\frac{x\left(2-x\right)}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right).\frac{2+x\left(1-x\right)}{x^2}\)

\(\Leftrightarrow Q=\frac{-x\left(x-2\right)^2-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{2+x-x^2}{x^2}\)

\(\Leftrightarrow Q=\frac{x\left(x^2-4x+4\right)-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(\Leftrightarrow Q=\frac{x\left(x^2+4\right)}{2\left(x^2+4\right)}.\frac{x+1}{x^2}\)

\(\Leftrightarrow Q=\frac{x+1}{2x}\)

b) Để \(Q\inℤ\)

\(\Leftrightarrow x+1⋮2x\)

\(\Leftrightarrow2\left(x+1\right)⋮2x\)

\(\Leftrightarrow2x+2⋮2x\)

\(\Leftrightarrow2⋮2x\)

\(\Leftrightarrow2x\inƯ\left(2\right)\)

\(\Leftrightarrow2x\in\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow x\in\left\{\pm\frac{1}{2};\pm1\right\}\)

Mà \(x\inℤ\)

Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)

\(x^2-\left(y-3\right)^2-4x+4\)

\(=x^2-\left(y^2-6y+9\right)-4x+4\)

\(=x^2-y^2+6y-9-4x+4\)

\(=\left(x^2-4x+4\right)-\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2-\left(y-3\right)^2\)

\(=\left[\left(x-2\right)-\left(y-3\right)\right]\left[\left(x-2\right)+\left(y-3\right)\right]\)

\(=\left(x-y+5\right)\left(x+y-5\right)\)

8 tháng 10 2020

1.

x2 - ( y - 3 )2 - 4x + 4

= ( x2 - 4x + 4 ) - ( y - 3 )2

= ( x - 2 )2 - ( y - 3 )2

= [ ( x - 2 ) - ( y - 3 ) ][ ( x - 2 ) + ( y - 3 ) ]

= ( x - 2 - y + 3 )( x - 2 + y - 3 )

= ( x - y + 1 )( x + y - 5 )

2.

a) Ta có : 2x4 + 8x3 + 9x2 - 4x - 5

= 2x4 + 10x2 - x2 + 8x3 - 4x - 5

= ( 2x4 - x2 ) + ( 8x3 - 4x ) + ( 10x2 - 5 )

= x2( 2x2 - 1 ) + 4x( 2x2 - 1 ) + 5( 2x2 - 1 )

= ( 2x2 - 1 )( x2 + 4x + 5 )

=>(2x4 + 8x3 + 9x2 - 4x - 5) : ( 2x2 - 1 ) = x2 + 4x + 5

b) Ta có : x2 + 4x + 5 = ( x2 + 4x + 4 ) + 1 = ( x + 2 )2 + 1 ≥ 1 > 0 ∀ x

=> đpcm

11 tháng 8 2016

Bài 1:

a. A = x^2 - 5x - 1

\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)

\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)

Dấu = khi x=5/2

Vậy MinC=-29/4 khi x=5/2

 

 

11 tháng 8 2016

2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )

=>4x2-12x+9+1-16x2=-14x2+13x-3

=>-12x2-12x+10=-14x2+13x-3

=>2x2-25x+13=0

\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)

\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)

\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)

\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)

c. 4.( x - 3 ) - ( x + 2 ) = 0

=>4x-12-x-2=0

=>3x-14=0

=>3x=14

=>x=14/3