Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
Theo bđt AM GM Ta có : \(\hept{\begin{cases}1+a^2\ge2a\\1+b^2\ge2b\\1+c^2\ge2c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{1+b^2}\le\frac{a}{2a}=\frac{1}{2}\left(1\right)\\\frac{b}{1+b^2}\le\frac{b}{2b}=\frac{1}{2}\left(2\right)\\\frac{c}{1+c^2}\le\frac{c}{2c}=\frac{1}{2}\left(3\right)\end{cases}}\)
Cộng vế với vế của (1) ; (2); (3) ta được :
\(\frac{a}{1+a^2}+\frac{b}{1+c^2}+\frac{c}{1+c^2}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\) (đpcm)
Bài 2 :
Ta có :
\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a^2b-ab^2+a^2c-ac^2}{\left(b+c\right)\left(b^2+c^2\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)( 1 )
\(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)( 2 )
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\) ( 3 )
Cộng ( 1 ) , ( 2 ) , ( 3 ) ta được :
\(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
\(=ab\left(a-b\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)
\(+ac\left(a-c\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b62\right)}\right]\)
\(+bc\left(b-c\right)\left[\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b^2\right)}\right]\)
Theo đề bài thì \(a,b,c>0\)( các biểu thức trong các dấu ngoặc đều không âm ) \(\Leftrightarrow dpcm\)
Thấy đúng thì tk nka !111
Bài 3:
ta có : \(a^4+b^4\ge2a^2b^2\)
Cộng \(a^4+b^4\) vào 2 vế ta được:
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\Leftrightarrow a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
Ta cũng có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)
\(\Leftrightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^4\)
mà theo bài thì \(a+b>1\)\(\Rightarrow dpcm\)
TK MK NKA !!!
2.
a, Có : (a+b+c).(1/a+1/b+1/c)
>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)
= 9
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
2.
b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )
<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2
<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2
<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
A = \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
= \(a.\frac{a}{b+c}+b.\frac{b}{a+c}+c.\frac{c}{a+b}\)
=\(a.\frac{a}{b+c}+1-1+b.\frac{b}{a+c}+1-1+c.\frac{c}{a+b}+1-1\)
= \(\frac{a\left(a+b+c\right)}{b+c}-a+\frac{b\left(a+b+c\right)}{a+b}-b+\frac{c\left(a+b+c\right)}{a+b}-c\)
= \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)
= (a+b+c) - (a+b+c) = 0