K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

A ) ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ :

      \(BH^2=AB^2-AH^2\)

    \(\Leftrightarrow\)\(15^2-12^2=81\)

\(\Rightarrow BH=\sqrt{81}=9\)(cm)

     Ap dụng pitago ta lại có :

        \(HC^2=AC^2-AH^2\)

\(\Leftrightarrow HC^2=13^2-12^2=25\left(CM\right)\)

\(\Rightarrow HC=\sqrt{25}=5\left(cm\right)\)

Vậy : \(BC=BH+HC=5+9=14\left(cm\right)\)

24 tháng 4 2017

sao lại sử dụng Py - ta - go đc ? tam giác ABC nhọn mà

11 tháng 8 2018

a) Xét ΔANH và ΔAHC có:

∠(NAH) chung

∠(ANH) = ∠(AHN) = 90o

⇒ ΔANH ∼ ΔAHC (g.g)

b) Ta có :

Tương tự : CH = 5 (cm)

⇒ BC = BH + CH = 9 + 5 = 14 (cm)

c) Theo chứng minh trên ta có:

Chứng minh tương tự ta có :

ΔAMH ∼ ΔAHB ⇒ AH2 = AM.AB (2)

Từ (1) và (2) ⇒ AN.AC = AM.AB (3)

Xét ΔAMN và ΔACB có :

∠A chung

AN.AC = AM.AB

⇒ ΔAMN ∼ ΔACB (c.g.c)

d) Ta có : ΔAMH ∼ ΔAHB

Lại có ΔAMN ∼ ΔACB (cmt)

Bài 1: Cho hình bình hành ABCD, E và F lần lượt là trung điểm của AB,CD. Gọi M,N lần lượt là giao điểm của AF, CE với BD.a) CM: tứ giác AECF là hình bình hànhb) CM: DM=MN=NBc) CM: MNEF là hình bình hànhd) AN cắt BC ở I, Cm cắt AD ở J. Cm: IJ,MN,EF đồng quy.Bài 2 : Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH vuông góc với AB ( H thuộc AB), MK vuông góc với AC ( k thuộc AC).a) CM: Tứ giác...
Đọc tiếp

Bài 1: Cho hình bình hành ABCD, E và F lần lượt là trung điểm của AB,CD. Gọi M,N lần lượt là giao điểm của AF, CE với BD.

a) CM: tứ giác AECF là hình bình hành

b) CM: DM=MN=NB
c) CM: MNEF là hình bình hành

d) AN cắt BC ở I, Cm cắt AD ở J. Cm: IJ,MN,EF đồng quy.

Bài 2 : Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH vuông góc với AB ( H thuộc AB), MK vuông góc với AC ( k thuộc AC).

a) CM: Tứ giác AKMH là hình chữ nhật.

b) E là trung điểm của MH. CM: BHKM là hình bình hành.

c) CM: 3 điểm B,E,K thẳng hàng.

d) F là trung điểm của MK. Đường thẳng HK cắt AE tại I và AF tại J. Cm: HI=KJ.

Bài 3 : Cho tam giác ABC vuông tại C. Gọi M,N lần lượt là trung điểm của BC và AB. Gọi điểm P đôi xứng với M qua N.

a) tứ giác ANMC là hình gì? Vì sao?
b) CM: tứ giác MBPA là hình bình hành.

c) CM: tứ giác PACM là hình chữ nhật.

d) Đường thẳng CN cắt PB tại Q. CM: BQ=2PQ

Bài 4: Cho tam giác ABC có M,N lần lượt là trung điểm của AB và AC.

a) tứ giác BMNC là hình gì? vì sao?

b) Gọi I là trung điểm của MN. Đường thẳng AI cắt BC tại K. CM: AMNK là hình bình hành

c) tam giác ABC cần có điều kiện gì thì tú giác AMNK là hình thoi.

d) Với điều kiện trên của tam giác ABC, vẽ KH vuông góc với AC tại H. đường thẳng KH cắt MN tại E. CM: Tam giác AME là tam giác vuông.












































MÌNH CẦN GẤP MẤY BÀI NÀY. AI LÀM ĐỦ MIK TICK CHO NHA!

0
3 tháng 9 2017

bạn có nhầm đề bài ko?BD/CE hay BD.CE

19 tháng 3 2017

trả lời giúp với ạ đang cần bài gấp 

19 tháng 3 2017

a. xét tam giác ABC và tam giác HAC có

góc ACB= góc HCA ( góc chung)

góc BAC = góc AHC (=90độ)

do đó tam giác ABC đồng dạng với tam giác HAC(g.g)

b. theo bài ra ta có góc BAC=90 độ

suy ra tam giác ABC vuôg tại A

ta lại có AB=6cm, AC=8cm

suy ra AB ^2+ AC^2= BC^2

thay vào ta có  6^2+ 8^2= BC^2

suy ra BC^2= 10^2

suy ra BC = 10 (cm)

26 tháng 3 2016

mình tóm tắt thôi nha

▲MHA đồng dạng ▲HBA(g-g)

▲ABC đồng dạng ▲HBA(g-g)

suy ra ▲MHA đồng dạng ▲ABC

▲MHA đồng đăng ▲ANM 

suy ra ▲ANM đồng dạng ▲ABC

suy ra tỉ số rồi ra

b)áp dụng PY-ta-go thì 

BC =25cm

ta có S▲ABC =1/2 AB.AC

mặt khác S▲ABC=1/2 AH.BC

suy  ra AB.AC=AH.BC

suy ra AH=(15.20)/25=12cm

ta có ▲ANM đồng dạng ▲ABC 

suy ra \(\frac{NM}{BC}=\frac{AM}{AC}\)

\(\Rightarrow\frac{AH}{BC}=\frac{AM}{AC}=\frac{12}{25}\)

\(\Rightarrow\frac{S▲ANM}{S▲ABC}=\left(\frac{12}{25}\right)^2=0,2304\)

nhớ kick cho mình nha

26 tháng 3 2016

câu b) tính tỉ số diện tích dùm mình lun nha bạn cần gắp lắm!!!!!!!!!!