K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

     a ; Để A có giá trị nguyên thì:

           n-5:n+7

          (n-5)-(n+7):n+7

          -12:n+7

8 tháng 2 2019

a, \(A=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)

A có giá trị nguyên \(\Leftrightarrow n+1\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n + 11-12-23-36-6
n0-21-32-45-7

b, A tối giản \(\Leftrightarrow(n+1;n+5)\Leftrightarrow(n+1;6)=1\)

                   \(\Leftrightarrow(n+1)\)không chia hết cho 2 và \((n+1)\)không chia hết cho 3

                    \(\Leftrightarrow n\ne2k-1\)và \(n\ne3k-1(k\inℤ)\)

P/S : Hoq chắc :>

5 tháng 4 2019

a, Biểu thức A có \(5\inℤ,n\inℤ\). Để A là phân số thì ta có điều kiện là :\(n-1\ne0\Rightarrow n\ne-1\)

\(A=\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

Để A là số nguyên \(\Leftrightarrow n-1\in\left\{\pm1;\pm5\right\}\)

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow n-n+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : ....

c, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}< 1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)

\((đpcm)\)

1 tháng 4 2018

a)    n=-1